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Abstract 
We introduce a new non-linear method for RGB-to-XYZ color 
calibration based on the technique of thin plate splines. 
Originally, thin plate splines were designed for deformable 
matching between 2-dimensional images for object recognition. 
We use 3-dimensional thin plate splines to map between sets of 
RGB device coordinates and corresponding sets of CIE XYZ 
coordinates. Tests calibrating several displays as well as a camera 
show thin plate spline calibration to be more accurate than 
existing linear or non-linear calibration methods. 

1. Introduction 
To color calibrate a display, we must generate a training set by 
varying its RGB input and measuring the corresponding XYZ 
values generated by the display. If we view the training set of RGB 
values as a 3D ‘object’ to be matched to another 3D object defined 
by the set of corresponding XYZ values, then we can apply thin 
plate splines (TPS) to calculate the mapping between them. This 
mapping calibrates the device since it can be used to predict the 
XYZ output for an RGB input not contained in the training set. 

Many previous RGB-to-XYZ calibration methods have focused on 
linear relationships expressed in terms of a 3x3 matrix.1-3,12 Some 
methods have used a look-up table with interpolation.18 While a 
linear model is compact and convenient, it cannot necessarily 
express all the relationships in the data that a non-linear model can. 
The 3x3 linear models also are insufficient for devices such as 
digital light projector (DLP) displays that are based on 4 or more 
primaries.2 

To address the limitations of linear models, others have proposed 
non-linear calibration methods. Vander and Haegen15 in calibrating 
a camera for imaging skin lesions introduce a non-linear model 
involving a “de-linearizing operator” (DLO) that transforms a 
three-element vector into an m-element (m > 3) vector representing 
a higher-order polynomial transformation.  

TPS has been applied successfully to many deformable registration 
problems.6-9,17 Generally, it has been found to be superior to other 
linear and nonlinear methods in terms of stability and accuracy. It 
avoids a least-squares solution of an over-determined set of linear 
equations and it does not depend on the selection of a set of optimal 
parameters. 

In the case of deformable 3D image registration, TPS maps each 
coordinate axis separately. For color calibration this means that 
there will be 3 separate mappings: RGB→X, RGB→Y, and 
RGB→Z. 

Our experiments with a SONY camera and 9 display monitors 
show that the TPS mappings provide better calibration than the 
other methods tested. This result holds for the camera whether the 
input data are linearized to make Gamma=1 in advance or not. 

2. Thin Plate Splines Introduction 
A training set consists of N pairs of corresponding RGB and XYZ 
values {(Ri,Gi,Bi), (Xi,Yi,Zi)}. TPS determines parameters wi and 
(a0, a1, a2, a3) controlling three non-rigid mapping functions fX, fY, 
fZ so 

 (X,Y,Z) = (fX(R,G,B), fY(R,G,B), fZ(R,G,B)).  

TPS is defined by a non-linear function with an additional linear 
term. Without loss of generality, consider only fX definition in 
which wi and ai are coefficients to be determined: 
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Each training set pair provides defines 3 equations. For the ith pair 
we have 
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In addition, a smoothness constraint is imposed by minimizing the 
bending energy. In the original TPS work,5 the bending energy 
function was defined in 2D, but it generalizes to higher dimensions. 
For 3D RGB we have: 
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where )( XfJ  is the total bending energy described in terms of the 
curvature of Xf . Following others,16,21,22 the energy is minimized 
when 
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As a result, there are (N+4) unknowns in (N+4) linear equations so 
the TPS parameters can be found through matrix operations. Define 
L follows: 
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where Uij = U(||(Ri,Gi,Bi i)- (Rj,Gj,Bj)||, 
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and 0 is the 4x4 matrix of zeroes.  

Additionally define:  

W= (w1, w2,…, wN, a0, a1, a2, a3)
T,  

and 

K = (X1, X1, X2… XN,0,0,0,0)T. 

We can then write K=LW and solve for W as 

W = L-1K. 

3. Experiments 
We implemented the proposed TPS method in Matlab19 and tested 
its accuracy in terms of camera calibration and display calibration. 
For comparison, we also implemented the non-linear de-
linearization method (DLO), a linear transform applied to raw data 
(a special case of DLO) methods, and the standard 3x3 linear 
transform applied to linearized data. 

3.1 Error Measures 
To evaluate the effectiveness of TPS, we use three error measures. 
The first is the Euclidean distance between estimated XYZ values 
and true XYZ values; the second is the angular difference between 
them; and the third is ∆E2000 as defined by CIEDE2000.13  

Given estimated ],,[ eee ZYX  and measured ],,[ rrr ZYX  the 
distance and angular error are defined in the standard way. 
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The root mean square (RMS) error over a dataset of N samples is 
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The angular error is  
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3.2 Camera Calibration  
The goal of calibrating color for a color camera is to find the 
mapping from camera RGB to the XYZ of the captured light. If the 
camera sensors satisfy the Luther condition20 then in principle a 
calibrated camera could be used as an imaging colorimeter. We test 
TPS for camera calibration on the camera data from the Simon 
Fraser University color imaging online database.10 The camera is a 
SONY DXC-930 three-chip CCD video camera and the database 
holds 598 RGB-XYZ pairs. Details of the data acquisition can be 
found in Ref. [11]. We exclude those pairs for which one or more 
of the RGB is 255, leaving 583 pairs. 

Leave-one-out cross validation is used for testing. For each of the 
583 pairs, the camera is calibrated using the other 582 pairs and 
then the error in predicting the remaining pair is calculated. We 
compute the RMS error and maximum for these 583 predictions.  

Table 1 shows the results when the camera data is pre-processed to 
linearize the relationship between R and X, R and Y, and so forth 
as it is has been in the SFU dataset. Table 2 gives the 
corresponding results when we apply a gamma of 2 to each channel 
(e.g., R1/2) to the linear data. 

 
 
Table 1: Camera calibration for linearized camera data. The 
table entries are the leave-one-out error as a function of 
method used. The methods are 3x3 linear, non-linear DLO and 
TPS. The errors are the maximum and root mean square of the 
Euclidean distance in XYZ, angular difference in XYZ, and 
CIEDE2000. The right hand column shows the number of 
predictions with ∆E2000 < 1. \ 

Distance Angular ∆E2000 Type 
RMS Max RMS Max RMS <1 

3x3 0.03 0.22 6.10 26.0 11.5 43 
DLO 

(m=6) 
0.02 0.09 5.35 23.7 5.39 72 

DLO 
(m=8) 

0.02 0.10 3.75 18.4 4.87 110 

DLO 
(m=11) 

0.02 0.10 3.80 20.7 5.11 76 

TPS 0.02 0.10 1.90 6.70 4.27 160 
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Table 2: Camera calibration for non-linear camera data with 
Gamma=2. See Table 1 caption for more detail. 

Distance Angular ∆E2000 Type 
RMS Max RMS Max RMS <1 

3x3 0.10 0.70 6.621 26.0 6.28 5 
DLO 

(m=6) 
0.03 0.18 7.545 24.7 7.195 26 

DLO 
(m=8) 

0.03 0.15 7.260 19.5 7.260 22 

DLO 
(m=11) 

0.02 0.12 3.121 18.1 4.468 102 

TPS 0.02 0.12 1.875 6.47 4.195 181 
 
 
It would be helpful to know the minimal training set size required 
for acceptable calibration, so we varied training size from 10 to 500 
to see how the error changed. For each choice of size, we extract a 
random training set, test on the remaining data, and calculate the 
RMS ∆E2000 error. To evaluate the likely worst-case calibration for 
a given training set size, we then find the maximum of these RMS 
errors over 150 such tests. Figure 1 plots the maximum RMS error 
as a function of the training set size both with and without gamma. 
As the training size increases, the error continues to decrease; 
however, the gain in accuracy becomes very marginal after the 
training set reaches 50 to 100 pairs. 

 

 
Figure 1 The Maximum ∆E2000 RMS Error of camera decreases as training 
data size increases 

3.3 Display Calibration  
To determine if TPS is also an effective tool for color calibration of 
displays, we apply it to 9 different display devices listed in Table 3. 
We use the calibration data for the CRTs, LCDs and projectors 
from Ref. [3] for which there are 1000 measured RGB-XYZ pairs 
sampled on a uniform 10x10x10 grid in RGB space. We use the 
DLP data from Ref. [4], for which there are 2273 pairs. 

 
 

Table 3: Displays Used in Color Calibration Tests 
Name Display Monitor Device 
CRT1 Samsung Syncmaster 900NF 
CRT2 NEC Accusync 95F 
LCD1 IBM 9495 
LCD2 NEC 1700V 
LCD3 Samsung 171N 
PR1 Proxima LCD Desktop Projector 9250 
PR2 Proxima LCD Ultralight LX 
DLP1 Toshiba 
DLP2 Infocus 

 
 
We carried out a leave-one-out test similar to that for the camera 
calibration tests. To make the comparison across devices as 
comparable as possible, we selected a subset containing only 1,000 
of the DLP pairs by sampling uniformly. Table 4 shows the 
performance comparison.  

To find the minimal training dataset that can produce acceptable 
results, we uniformly select S values from each color channel to 
form the training data of size S3. Since there are 1,000 
measurements each for the CRTs, LCDs, and LCD projectors, we 
vary S from 3 to 8, leaving approximately half the data for testing. 
For DLP1 and DLP2, we vary S from 3 to 10. Figure 2 shows that 
as the training size is increased, the error decreases, especially until 
the training size reaches 216 (S=6). TPS is consistently more 
accurate than the other methods. 

4. Conclusions 
Thin plate splines are shown to be effective for color calibration of 
displays and a camera. Previously, these splines have been used to 
find deformable mappings between pairs of images. We extend 
them to 3-dimensions and use them to do a deformable mapping 
from RGB to XYZ. Although the thin-plate methods are more 
complex than other calibration methods, it produces more accurate 
results, which could be important, for example, in medical 
applications.  
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Figure 2 RMS ∆E2000 error for each of the three different display technologies (the other models result in similar plots) decreases as training data size increase. 
The horizontal axis reflects the number of samples, S, per channel so the actual training set size is S3; the vertical axis is the corresponding RMS ∆E2000 RGB-to-
XYZ prediction error. 
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Table 4: Color display calibration results in terms of RGB-to-XYZ prediction. The table entries are the leave-one-out error as a 
function of the method used. The methods are DLO (de-linearizing operator) linear case (M=3) applied to the raw calibration data, 
DLO non-linear (M>3) applied to the raw data, least-squares 3x3 linear transform after applying a separate linearization step to 
the data (except for the DLPs where this linearization is inappropriate), and thin plate spline interpolation (TPS) applied to the 
raw data. The errors are the maximum and root mean square of the Euclidean distance in XYZ, angular difference in XYZ, and 
∆E2000. The right hand column shows the number of predictions with ∆E2000 < 1.  
Device Method  Distance Angular ∆E2000 
   RMS Max RMS Max RMS Max <1 
CRT1 DLO Linear M=3 0.1611 0.4463 6.4009 24.3425 13.2818 36.699 5 
 DLO M=6 0.14632 0.3567 8.6441 41.3382 15.3726 60.703 5 
 DLO M=8 0.13056 0.3689 24.6705 174.597 18.0991 65.4617 1 
 DLO M=11 0.01862 0.08502 18.6784 174.184 2.86592 21.8067 618 
 LS 3x3      1.01 3.17  
 TPS  0.00584 0.02557 5.5606 174.66 0.32751 3.7678 995 
CRT2 DLO Linear M=3 0.14996 0.40065 6.40601 36.1534 11.8571 37.1721 3 
 DLO M=6 0.13637 0.34785 8.92223 54.7284 14.3185 58.1724 3 
 DLO M=8 0.12666 0.28145 22.2976 174.442 16.9171 59.1689 0 
 DLO M=11 0.00761 0.02041 1.39815 25.034 1.37686 10.6406 798 
 LS 3x3      0.78 3.12  
 TPS  0.00366 0.01607 2.9576 93.272 0.21907 2.1598 995 
LCD1 DLO Linear M=3 0.17082 0.47608 7.29339 53.4337 13.0037 36.2539 2 
 DLO M=6 0.14886 0.39728 10.5131 78.8017 14.8325 45.3226 3 
 DLO M=8 0.13762 0.31911 25.9624 171.042 17.5825 62.082 0 
 DLO M=11 0.06429 0.13534 12.8953 136.659 6.0407 37.0948 28 
 LS 3x3      0.44 3.12  
 TPS  0.00329 0.01585 0.60912 17.177 0.24241 2.1843 996 
LCD2 DLO Linear M=3 0.19479 0.69832 8.71708 54.6947 15.8773 40.1528 0 
 DLO M=6 0.17189 0.49652 13.4849 81.701 18.6333 62.1142 0 
 DLO M=8 0.16318 0.45034 29.8758 171.78 21.0099 61.7625 1 
 DLO M=11 0.03849 0.09604 16.4164 148.461 9.73764 49.9673 5 
 LS 3x3      1.35 4.29  
 TPS  0.00556 0.02097 3.9459 124.13 0.38106 3.081 990 
LCD3 DLO Linear M=3 0.19243 0.5177 9.20738 59.121 16.5253 40.604 0 
 DLO M=6 0.16433 0.42005 12.7893 84.973 19.4618 69.2608 0 
 DLO M=8 0.15198 0.36127 28.4391 173.021 21.8315 66.4283 0 
 DLO M=11 0.04281 0.11316 20.5913 172.73 5.74086 35.7249 50 
 LS 3x3      1.59 5.13  
 TPS  0.00903 0.03979 4.1319 130.02 0.35836 2.1779 990 
PR1 DLO Linear M=3 0.17039 0.45999 8.5471 69.0313 15.3383 43.0481 1 
 DLO M=6 0.15412 0.37343 13.5419 107.124 19.8696 64.1434 0 
 DLO M=8 0.14597 0.30765 25.024 168.756 21.5074 61.7837 1 
 DLO M=11 0.05939 0.14387 6.05808 68.7654 5.10661 46.6635 36 
 LS 3x3      0.64 3.46  
 TPS  0.00925 0.04505 0.5604 14.827 0.5089 3.6278 960 
PR2 DLO Linear M=3 0.16187 0.39777 7.96917 60.932 14.0981 36.9653 1 
 DLO M=6 0.14546 0.32443 12.1573 96.6575 18.5984 63.8277 1 
 DLO M=8 0.13718 0.28342 23.1981 170.991 20.2858 64.4572 1 
 DLO M=11 0.07252 0.15046 10.5777 117.781 6.50392 43.1625 25 
 LS 3x3      0.87 2.67  
 TPS  0.00534 0.02215 0.29534 7.21 0.27936 1.9141 992 
DLP1 DLO Linear M=3 0.19812 0.44836 5.06724 21.0655 9.18578 21.4669 1 
 DLO M=6 0.09377 0.33644 14.1473 111.189 10.6143 59.4263 59 
 DLO M=8 0.079187 0.27408 9.78453 131.179 7.82091 49.3504 84 
 DLO M=11 0.068919 0.27832 3.16055 32.8669 3.66714 12.3535 201 
 TPS  0.008122 0.04383 0.24352 2.4556 0.41143 1.7767 987 
DLP2 DLO Linear M=3 0.275521 0.45350 8.05293 22.3226 13.7922 26.223 1 
 DLO M=6 0.12843 0.44261 22.6295 129.373 16.005 71.7217 17 
 DLO M=8 0.111603 0.40507 18.0235 147.961 13.0062 68.8163 16 
 DLO M=11 0.100291 0.39510 11.423 102.94 7.48642 25.8808 8 
 TPS  0.006972 0.04907 0.63487 15.481 0.38952 2.1652 985 
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