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Abstract 
Measurements of the edge characteristics of a xerographic printer 
are presented. Obtained using a high resolution drum scanner, 
these data are analyzed with the goal of quantifying edge 
nonlinearities. Based on these measurements, a simple model is 
constructed to describe the change in printed toner density for a 
thin border region surrounded by two larger patches. The model is 
subsequently used to develop a real time correction algorithm that 
utilizes the edge nonlinearity measurements, using a fixed point 
iterative approach. These corrections are shown to be significant, 
and strongly dependent on the levels of the surrounding patches. 
Furthermore, it is shown that for larger border widths, the 
correction is much smaller. This behavior is physically 
reasonable, as the correction should approach zero as the border 
region becomes large. 

Introduction  
The art of color printer calibration has been well studied,1-5 the 
applications of which can be found in several consumer products 
today. Most of these methods employ the Neugebauer approach, 
whereby a series of uniform area patches is measured to develop a 
set of equations to describe the reflectance of a halftone pattern on 
paper. This set of equations, denoted the “printer model” is then 
inverted to determine one or more lookup tables, used to produce 
the desired printer output. These lookups will generally produce 
smooth monotonic output for each channel, and for CMYK printers 
there may be an additional requirement to achieve gray balance 
between (CMY) and K. 

In many marking systems, in particular those involving 
electrophotography, the ink/toner densities at halftoned edges can 
be quite different relative to uniform regions. For xerography, 
average edge tangential electric fields can have a significant effect 
on the density of the toner cloud, as well as its proximity to the 
photoreceptor.6 Likewise at edges, field components parallel to the 
PR surface can give rise to toner cloud displacements, and can 
result in artifacts such as lead-edge and trail-edge deletions.6 Both 
these factors are manifested in the form of reduced dot gain, and 
partial dots at edges will be either significantly reduced in size or 
completely eliminated. Clearly, modeling each of these edge 
nonlinearities from a theoretical standpoint is a formidable task, and 
such a model would not be amenable to applications that require 
real time corrections. 

Edge processing algorithms such as trapping and anti-aliasing are 
most affected by these nonlinearities. Focusing on one separation at 
a time, a thin strip of an intermediate digital value (C) is placed at 
the position of the original intersection between two patches (A and 
B), as shown in Figure 1. Because of the edge marking 
nonlinearities, the actual printed toner densities in these regions can 
be strongly distorted, and can lead to objectionable artifacts. 

Clearly these effects will be compounded for intersections where 
multiple color separations are present. In the case of trapping, an 
intentional multi-pixel “defect” is added at color interfaces to 
mitigate registration errors, where the width of the trap is 
determined by the maximum misregistration of the marking system. 
Generally, the color of this defect is chosen such that it is not 
objectionably visible in the presence of the original two intersecting 
colors.7,8 For marking processes such as xerography, the printed 
color of the trap region may take on an undesirable color cast in the 
presence of nonlinearities, thus reducing the benefit of trapping. It 
would therefore be desirable to apply corrections to these regions in 
order to produce the colors that were originally intended. 

B C A

 
Figure 1. Schematic of a common adjacency situation where a thin strip of 
color C is placed at an interface between larger patches A and B. 

As previously mentioned, a correction algorithm involving a 
complete description of the edge development/transfer physics for 
each separation may provide an accurate edge color correction, but 
would generally not be practical for applications that require real 
time correction. On the other hand, a truly empirical correction 
algorithm that does not include details of the edge behavior might 
be computationally efficient, but would most likely provide 
inadequate correction in certain regions of color space. In this 
work, a semi-empirical approach is chosen that utilizes 
measurements of the printer edge characteristics. These 
measurements are assumed to be collected offline, and are stored in 
the form of lookup tables, one for each separation, to be used at run 
time. The correction algorithm uses these lookups in conjunction 
with fixed point iteration to solve for the corrected edge values, one 
separation at a time. Because printer edge characteristics are 
directly used in the calculation, the algorithm provides a correction 
mechanism that is robust across the device color space. 

Measurement 
In order to characterize the edge nonlinearities, a PostScript test 
master was created for each cyan, magenta, yellow, and black 
separations. Each single separation master contained 84 target 
patches, and each patch (Figure 2) consisted of a large (1/4 inch) 
central uniform region (contone value A) surrounded by a larger 
(3/4 inch) uniform patch (contone value B). Placed at the interface 
between A and B was a thin border of width 0.005 inches, with a 
contone value C; alignment marks were also positioned to enable 
facile location of this border region during analysis. For the 84 
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patches, the contone values were ramped in 14.3% increments, with 
the condition that ACB ≤< . 

 
Figure 2. Schematic of a test patch used for edge characterization 
measurements. A large uniform patch (0.25”) is surrounded by a larger patch 
(0.75”) of a lighter color. Placed at the interface is a thin strip (0.005”) with an 
intermediated color. The alignment marks are used to locate the interface 
region. Note that each patch consists of a single separation. 

The four masters were then printed on a color xerographic printer, 
with a 600 dpi resolution, using a 170 dpi halftone. The width of 
the border region C was therefore equal to exactly 3 pixels in the 
final prints. Each of these targets was then scanned using a 
Crosfield 6180 drum scanner, at an approximate resolution of 8700 
dpi. The resulting files were converted from RGB to CMYK (8 
bits/channel) in-situ by the scanner software, resulting in 
uncompressed file sizes of approximately 300 MB for each patch 
(note that each patch contains only a single separation). A portion 
of one of these scans (K separation target) is shown in Figure 3, 
and clearly shows the detailed halftone structure. In total, 336 of 
theses patches were scanned. 

 
Figure 3. A portion of one patch measured with a drum scanner, for the K 
separation. The halftone dots are clearly visible. 

Although great care was taken during the scanning to align the 
patches relative to the scan axes, it was still necessary to rotate and 
deskew the images by small amounts to compensate for image 
warping. Both of these operations were enabled by the placement 
of alignment marks on each patch, and the rotation/skew angles 
never exceeded 1° for all separations during post acquisition 
processing. 

The regional scanned halftone values were converted to contone 
values by computing the mean digital value within a given window, 
where the window was assumed to include many halftone cycles. 
Although the scanned data values result from a convolution of the 
scanner modulation transfer function (MTF) with the actual printed 
halftones, it is a fairly good measure of the printed halftone fill 

factor. The mean value was measured for each of the large uniform 
patch regions (A or B), each of which had a known digital input 
value (as specified in the PostScript master). This enabled the 
construction of an 8 node calibration lookup table, which was 
interpolated using a least squares fit to a 6th order polynomial 
function in order to estimate the calibration for points between 
nodes. The calibration curve for the K separation is shown in 
Figure 4. 
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Figure 4. The calibration curve computed using a 6th order least squares 
polynomial fit. The circles indicate the measured values from the scanned 
patches. 

For each patch, the behavior in the vicinity of the border region C 
was measured for the top, bottom, left, and right edges associated 
with the transitional region. This was accomplished by choosing a 
window with a height (width) approximately equal to the inner 
patch dimension (~2000 pixels @8700 dpi), and a width (height) 
equal to 3 pixels (@ 8700 dpi). The window was then moved from 
-75 to + 75 pixels relative to the center of the border region C 
(determined by the alignment marks), in order to measure the 
density profile near the transitional region. Figure 5 shows an 
example scan for the same patch for the top, bottom, left, and right 
edges for a K patch with A = 57%, B = 28%, and C = 43%. For 
reference, the solid line shows the theoretical response for an 
“ideal” halftoned border region using the measurement technique 
described above. As can be seen from the figure, the edge response 
is very similar for the four faces, suggesting minimal lead- and trail-
edge deletion effects for the particular printer used. 

Figure 6 compares the transition profiles for different patches with 
B=28%, C=43% common for all patches, and A ranging from 43% 
to 100%. Interestingly enough, the curves all have the same 
qualitative features in the vicinity of region C. At the center of C is 
a relatively flat “linear” region approximately 6 pixels wide, 
surrounded by two “nonlinear” regions that show toner densities 
above or below that of the central region. The 6 pixel central region 
is referred to as “linear”, since its measured value corresponds to 
that which would be obtained with a large area patch; in other 
words, its response is linear. 
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Figure 5.  Example scan profiles for the top, bottom, left, and right faces of a 
patch. The width of the border region is approximately 43 pixels (@ 8700 dpi). 
For comparison, the solid line shows the ideal response in the absence of 
nonlinearities. 
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Figure 6. Plot of transition profiles for various patches with B=28% and 
C=42%, and ramping A values. Each of the curves has a similar qualitative 
shape to the left, independent of the A values. 
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Figure 7. Illustration of subdivision of region C into a linear region sandwiched 
between two nonlinear regions. 

Correction Model 
Based on the observations regarding the qualitative profile 
behavior, a simple model can be constructed to describe the 
“average” toner density as seen by an observer for a given 

separation. The border region C can be subdivided into three 
decoupled sub-regions (Figure 7), and the average value can be 
described by the following expression: 

( ) ( )INLILINLA CBfwCwCAfwC ααααααααααα ,, ++=  (1) 

αA  and αB  are the input values for separation α for regions A and 
B, respectively, and ACα , ICα  are the average printed and the 
“intended” input levels for the border region. The coefficients Lwα  
and NLwα  correspond to the weights of the linear and two nonlinear 
regions, and are equal to the percentage of the total border region 
each occupies. For simplicity, it has been assumed that the weights 
of the two nonlinear regions are the same. The function ( )yxf ,α  
describes the average measured value of the nonlinear regions, 
given an interface involving input levels x and y. 

If the further assumption is made that the width of the nonlinear 
region is a constant ( NLt ≈ 50 µm), the linear and nonlinear weights 
can be expressed in terms of the total width, T, of the border region 
C: 

T
tw NLNL =α

, NLL ww αα 21−=  (2) 

provided 5.00 ≤≤ NLwα . A constant nonlinear region width 
implies its contribution to the overall printed level of the border is 
reduced as the width of region C increases; in other words, the 
printed level should approach that of a uniform patch for large 
border widths, an intuitive result. 

With knowledge of the behavior at the nonlinear regions, one can 
then predict the average toner density for border regions given the 
input contone levels and the border width. However, from the 
standpoint of correction the reverse problem must be solved: what 
is the input (or corrected) border value that will give rise to the 
desired border value? Equation 1 can be modified to describe this 
problem mathematically: 

( ) ( )CNLCLCNLT CBfwCwCAfwC ααααααααααα ,, ++=  (3) 

where TCα  and CCα  are the target printed value and the corrected 
input value, respectively. 

Clearly Equation 3 cannot generally be solved by analytic means, 
but it can be recast into a more convenient form using Equation 2: 

( ) ( )[ ]CCNLTC CBFCAFwCC ααααααααα ,, ++=  (4) 

where 

( ) ( )yxfyyxF ,, αα −≡  (5) 

The function ( )yxF ,α
 can be thought of as a measure of the 

departure from linearity for the “nonlinear” region of the border 
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area. ( ) 0, =yxFα  implies the entire border region exhibits a linear 
response, and therefore TC CC αα = ; no correction is required. Fixed 
point iteration can be used to solve Equation 4, with convergence 
guaranteed as long as the following condition is satisfied9: 

( ) ( ){ } 1,, <+∂
∂ CC

C
NL CBFCAF

C
w αααααα

α
α

 (6) 

Considering this correction model, it is therefore only necessary to 
measure the response of the nonlinear regions as a function of the 
input values present at the border (A,B,C), and use these values to 
compute ( )yxF ,α

. 

Results and Discussion 
Using the collected interface data described in the Measurement 
section, the average values for the nonlinear region were measured 
for each of the patches. Prior to computing theses averages, the 
data values were converted using the calibration lookup tables. 
Each of the four sides of each patch were used to obtain an average 
value for the two nonlinear regions ( )jif ,α  and ( )jkf ,α , where i 
and k correspond to the indices for region A and B, respectively, 
and j corresponds to the index for the border ( 7,,0 ≤≤ kji ). 
Therefore, these measurements created an 8X8 table for ( )yxf ,α . 
For those patches that yielded duplicate measurements of a 
particular ( )yxf ,α , the results were averaged over the number of 
duplications. Figure 8 shows a 3-dimensional plot of the ( )yxf ,α  
measurements for the K separation. As expected, the table is 
monotonic in both x and y. Furthermore, for a fixed border value C, 

( )yxf ,α  increases sharply with increasing A (or B) for 
CBA <, , and saturates for values CBA >, . This is significant, 

as it implies the printed border value is more severely impacted 
against a lighter value (lower halftone fill factor) in comparison to a 
darker value. 
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Figure 8. A 3-D plot of the measured nonlinear values for the node points 
chosen on the master. 

The 8X8 nonlinear region tables were then interpolated to produce 
a 256X256 lookup table (compatible with 8 bit contone values); 
these were subsequently converted to “nonlinear departure” tables 
F[i,j], to be used for the run-time correction algorithm. A discrete 

version of Equation 4, invoking the fixed-point algorithm, was used 
to compute the corrections, shown below: 

[ ] [ ] [ ]{ }icbFicaFwcic NLt ,[,[1 ++=+  (7) 

where tc is the target printed digital value, a and b are the digital 
values corresponding to regions A and B, and [ ]ic  is the ith 
iteration of the fixed point solution to the corrected value. Iteration 
continues until [ ] [ ] tolicic <−− 1 . Due to the quantization errors 
associated with the indexing of F in Equation 7, the tolerance was 
set to a value of 6 to avoid oscillatory behavior. For all interface 
combinations tested, no more than three iterations were required, 
with most finding convergence in two iterations. 

The algorithm was tested for border widths of 127 µm (3 pixels 
@600 dpi), assuming a linear width equal to 17 µm. Figure 9 shows 
the results of such calculations, for a variety of (A,B) combinations. 
Note that in all cases, the corrected border values were constrained 
to lie within [a,b] by the fixed point algorithm. For B=0 (Figures 9a 
and 9c), the corrected value is greater than the input value 
throughout the entire range. However, for 0≠B  (Figure 9b) the 
correction value is actually less than the input until approximately 
the midpoint, after which the correction becomes greater than the 
input. In this case, region A creates a gain in the adjacent nonlinear 
region that is greater than the loss of the nonlinear region adjacent 
to B. For comparison, Figure 9d shows the case where A=128, 
B=0, with a border width of 423 µm (10 pixels @600 dpi). Clearly, 
the correction is relatively small in comparison to a border width of 
127 µm (Figure 9a), a result that is consistent with intuition; the 
correction value should approach zero for large border regions. 
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Figure 9. Corrected contone values (■) for region C as a function of input 
value, compared to the case of no correction (—). a) A=128, B=0, border 
width=127 µm; b) A=255, B=128, border width=127 µm; c) A=255, B=0, 
border width=127 µm; d) A=128, B=0, border width=423 µm. 

This method was applied to an existing trapping algorithm for the 
purpose of producing a more accurate rendering of trap colors. 
Based on the many color pair intersections tested, the corrected 
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traps were far more pleasing, and showed little evidence of over-
correction. Figure 10 shows a pair of micrographs for a color 
intersection involving (CM) against (YK), with a trap placed at the 
intersection. The uncorrected trap (left) shows strong evidence of 
pullback at the interface, resulting in a lighter than expected 
rendering. With the correction (right), much of the pullback is 
mitigated, resulting in a far less visible defect, particularly when 
observed from a normal viewing distance. 

 

      

 

 
Figure 10. Micrographs of an intersection between (CM)/(MY) with a trap 
placed at the interface, for an uncorrected (left) and corrected (right) trap. The 
correction mitigates the pullback seen at the edges. 

Conclusions 
Edge characteristics of a xerographic printer were measured, with 
the goal of quantifying edge nonlinearities. A simple model was 
constructed to describe the change in printed toner density for a 
thin border region surrounded by larger patches. The model was 
subsequently used to develop a real time correction algorithm that 
utilized the edge nonlinearity measurements. For a border width of 
127 µm (3 pixels @600 dpi), these corrections were shown to be 
significant, and strongly dependent on the levels of the surrounding 
patches. Furthermore, it was shown that for larger border widths, 
the correction was much smaller, consistent with expectations. 

The simple model described here assumed a constant (and equal) 
width for the nonlinear regions. For halftoned edges transitioning to 
white, this may be inadequate, since partial dot loss in these cases 
may be more severe, and the “nonlinear” regions may be pushed 
much deeper into the edge. In these cases, it may be useful to 
incorporate a variable nonlinear region width (depending on the 
value of region B), which would result in a stronger correction. 
Furthermore, based on the edge characteristics of the particular 
printer used in these experiments, it is clear this correction model is 
only applicable for border regions greater than or equal to 
approximately 100 µm. For border widths less than this, the 
nonlinear regions will most likely begin to couple, creating greater 
error when applying this particular algorithm. Although, this 

correction may still be better than empirical models that do not 
account for the edge characteristics. 

The measurements were taken using a high resolution drum 
scanner, which was a labor-intensive process that generated 
approximately 100 GB worth of image data. Clearly, this is not a 
practical measurement approach for systems where toner 
composition, xerographic setpoints, and halftone designs change on 
a frequent basis. Because of this, a more efficient measurement 
technique, analogous to uniform area calibration methods, must be 
developed. This presents a formidable task, since instruments with 
a resolution of less than 10 µm must be used for these 
measurements. Furthermore, alignment and rotation are also 
difficult to achieve to the precision required for these 
measurements. 
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