
 

Scanning Calibration Targets 
R. Victor Klassen, Xerox J.C. Wilson Center for Research and Technology, Webster, New York, USA 

 

Abstract 
Characterizing a scanner well enough to calibrate a printer 
continues to be challenging. Barriers include the inherent 
noisiness of scan bars, and the lack of colorimetric response, 
leading to substantial sensitivity to black addition strategy as well 
as changes in materials (media or colorant set). Most scanner 
characterization work has been designed to improve the utility of 
the scanner for capturing arbitrary print input, an inherently 
difficult problem given that neither the materials nor the black 
addition strategy are in general known. If these are both known, 
the problem becomes tractable, and noise is the largest remaining 
issue. This paper deals with reducing the errors in patch averages 
when the patches are scanned from prints made on printers that 
use halftoning. 

Introduction 
The usual goal of scanner characterization is to obtain the best 
possible result when scanning pages of unknown origin. Such pages 
may or may not be halftoned, and they typically contain image 
content, rather than simple collections of constant patches. Lack of 
information regarding paper colour (and fluorescence) and 
colourant materials limits the quality of such characterizations. Our 
interest here is in determining how well we can characterize a 
scanner for a known input. We are asking the question: if we know 
the printer, and its colorant set, and we completely control what is 
printed, can we use a scan bar to calibrate that printer, rather than 
using a spectrophotometer? To be successful, we need a very good 
scanner characterization, but it may be thoroughly tailored to that 
printer. 

Sharma et al0 describe the impact an unknown amount of black 
substitution can have on scanner characterization. In the worst case, 
they found errors as high as 4.5 (mean ∆E), while when it was fully 
known, mean errors dropped below 1.2. When calibrating printers, 
there is generally no black substitution. It suffices to characterize 
the scanner for this case.  

Many others have characterized scanners. Ostromoukhov et al2 
obtained results of 2.37 (mean ∆E). One reason for their poorer 
results is that the printer was a desktop inkjet printer, with more 
noise and lower stability than the Xerographic printer used by 
Sharma et al. They noticed neighbourhood effects, and attempted to 
reduce their impact by using large patches. As we show later this 
gives incorrect results. Hardeberg3 optimized a third order (3×20) 
matrix, obtaining ∆E 1.4 on two scanners, with less good results on 
others. Previously, Haneishi et al4 had obtained ∆E=2 using a 
second order (3×10) matrix regression. Rao5 obtained similar 
values. Hardeberg’s thesis6, describes an experiment (p. 37ff.) in 
which a single scanner is characterized with a mean ∆E of 0.92, a 
max of 4.67 and a 95th percentile of 2.25 on a set of 288 patches 

(the same set used to calibrate). He also characterized and tested on 
(disjoint) subsets (p. 51), and found that when he used 144 patches 
to train, and the other 144 to test, the mean ∆E rose to 0.96, but the 
max (of the test set) fell to 3.36 (the max ∆E for the training set 
was higher, at 3.9). 

Because scanners are not colorimetric, they may exhibit 
metamerism: colours that appear identical to a scanner might 
appear different to a human observer. For fixed media and black 
substitution strategy metamerism is not a problem. However, the 
conversion from RGB to XYZ varies throughout colour space. As 
compensation, scanners may measure far more patches per minute 
than spectrophotometers: we can afford to sample colour space 
substantially more densely. Using small patches has its own 
problems, however, including halftone noise and integrating cavity 
effect. The main contribution of this paper is techniques for 
compensating for these two effects. 

The majority of this paper is devoted to image processing 
techniques improving the data used for scanner characterization. 
Application of a characterized scanner to grey-balance printer 
calibration is described briefly at the end, as a measure of the value 
of scanner based calibration. 

Scanner Characterization 
To characterize a scanner for printer calibration, we print a number 
of patches of various colours, measure them with a known 
instrument (such as a spectrophotometer), scan them and compute 
the patch averages. Finding the mapping from patch average to 
measured value is discussed later. This section covers reducing the 
noise in the patch average estimated reflectances. The three primary 
noise sources relevant this problem, in order of spatial scale, are 
point process noise due to printer noise and sensor noise in the 
scanner, halftone noise in halftoning printers, and integrating cavity 
effect, causing the apparent reflectance as observed by the scanner 
to depend on the reflectances of neighbouring pixels.  

The only difference between characterizing a scanner for printer 
calibration and characterizing it for arbitrary prints from that printer 
is the sampling of colour space. While there is no need to 
characterize the scanner in regions of colour space which are not 
used for printer calibration, all regions must be sampled in the more 
general case. Restricting the portion of colour space to sample 
offers us the opportunity to increase the sampling rate without 
increasing the number of sheets printed or scanned. 

The remainder of this section discusses methods for reducing the 
effect of the three primary noise sources, in order of increasing 
scale. 
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Point Process Noise 
Printer-induced point process noise will always be a limiting factor, 
but it is effectively modeled as Gaussian, with an amplitude that 
depends on separation-wise coverage. Some specific halftone levels 
may be particularly noisy (e.g. where halftone dots begin to appear, 
and where they begin to touch); we may avoid these levels if they 
are few and precisely known. 

Scanner-induced point noise includes dark noise and shot noise, 
and may be modeled or characterized as well. For example, Wach 
and Dowski7 discuss sensor noise modeling and characterization. 
One may also to have a relationship with the designer and/or 
manufacturer. For the purposes of this work, scanner noise may be 
well approximated as Gaussian, with an amplitude that depends on 
reflectance. Lacking specific knowledge of the sensor, it suffices to 
use an empirically derived square root form: σ~a+bR1/2, for some 
parameters a and b. Kodak Application Note MDT/PS-02338 
describes a variety of noise sources, which are either independent 
of signal (the lumped term a above) or proportional to its square 
root (bR1/2). Scanner noise at a single pixel can be as large as 0.01 
(reflectance) at 1σ, at the bright end; less at the dark end. 

Printer noise can be as much as 2-3 times as large as scanner noise, 
for a total noise as high as 0.04. Considering the effect these values 
would have on a characterization, they seem large, however, they 
are averaged over regions of 50×50 pixels or more. The standard 
error of the mean is then 0.04/50=.0008. The noise is typically 
largest at a reflectance somewhere between 0.2 and 0.5, for which 
an error of 0.0008 corresponds to 0.4%. To reduce the worst case 
error from point process noise, we estimate the noise levels as a 
function of printer coverage and use patches with linear dimensions 
proportional to the estimated noise. If the expected levels of noise 
at (say) 0.5 and 0.6 are x and x/2, we would print a patch having 
four times the area (twice the width and height) at 0.5 as compared 
to the patch printed at level 0.6. This brings the worst case close to 
the average case, at about 0.05%. 

A reflectance measurement error of 0.0005 at 0.03 reflectance 
gives an L* error of just under 0.2. This is the specification for 
repeatability of the Gretag SPM 100 spectrophotometer. At a 
reflectance of 0.2, the same error corresponds to ∆E<0.06. 

Halftone Noise 
Most printers halftone to create the illusion of continuous tone. 
Halftones may come in the form of blue noise, for printers capable 
of printing isolated pixels; or in the form of clustered dots, typically 
periodic with a spatial frequency of from 75-200 per inch. Standard 
practice in finding patch averages is to compute the mean RGB 
value of the central portion of the patch (edge pixels are avoided, 
lest part of a neighbouring patch contaminate the value). Taking an 
average with no regard to halftone period can lead to sampling 
errors. Usual practice is to increase the patch size making these 
errors small enough to be unimportant. We would rather use page 
real estate to increase the number of sample colours, and hence the 
quality of the characterization. Therefore we wish to minimize 
patch size, especially the minimum patch size, where the size 
varies. 

CMYK halftoned images contain noise at the frequencies of the 
halftone dots used. Each channel contributes some noise to the 
result, however yellow contributes substantially less than the other 
two. Each of the RGB channels has two or three contributing 
halftone screens: red is affected by magenta and black, and to some 
extent yellow; green is affected by cyan and black, and to some 
extent yellow; blue is affected by magenta, cyan and black. The 
pattern of halftones for any one separation has a regular repeat 
frequency corresponding to a few (typically less than 10) pixels in 
each dimension; using high addressability and supercell screens 
increases the intensity resolution from what would be less than 100 
levels to an acceptable number, however the dominant screen 
frequency is generally greater than 60 lines per inch, which means 
that the repeat pattern is less than 10 in a 600 spi scan. A simple 
box filter, of width equal to the dominant screen frequency, 
eliminates most of the halftone-induced noise. In a general de-
screening application such a filter would blur edges unacceptably; 
for finding the average reflectance of a nearly constant patch—we 
filter only within the region defined by each patch—there are no 
edges to blur. 

Were individual separations the entire story, it would suffice to 
average multiples of a single halftone cell. However multiple 
separations are involved. To capture an entire repeat pattern would 
require averaging multiples of the least common multiple of the cell 
repeat patterns for all separations involved (possibly omitting 
yellow, there are still typically three in blue). However, it is not 
necessary to go that far. Consider the case where cyan and black 
have repeat patterns of 7 and 9 pixels respectively (LCM=63). Any 
sequence of 7 pixels will have the same cyan contribution (to the 
extent halftone noise is the only noise source). We can average 
groups of 7 to obtain an “image” with the cyan halftone effectively 
removed. Another way to describe this is to apply a 7 pixel box 
filter to the image. It will still have noise, but not noise induced by 
the cyan halftone screen. Similarly the average of any sequence of 9 
pixels will have the same black contribution. The key observation is 
that the average of any sequence of 9 pixels from the filtered image 
will have both the cyan and black screen frequencies removed. This 
ignores the effect of unwanted absorptions, but it works well 
enough [unwanted absorptions, caused by (e.g.) cyan and magenta 
having overlapping absorption bands, lead to some remaining 
halftone noise at the least common multiple]. 

All of this applies in two dimensions. The frequencies in the two 
dimensions typically differ, so for each separation the method 
amounts to applying an appropriately sized box filter to the image, 
discarding pixels too near the edge to be covered by less than a 
complete filter. Using summed area tables9 accelerates box 
filtering, for large enough filters. 

Once the filtered pixels have been obtained, outliers are removed, 
and the remaining pixels are averaged. Our approach has been to 
average everything between the 5th and 95th percentile, but other 
choices could be used. At this stage a ‘pixel’ is the average of a 
halftone-cell sized neighbourhood; outliers removed in this process 
are typically print defects. 
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Other than the non-linear operation of removing outliers, averaging 
the filtered pixels is equivalent to taking a weighted average of all 
the pixels in the original patch image. All pixels obtain the same 
weight except those around a patch boundary.  

For large patches, a small error is incurred by simple averaging. 
Only for small patches would one expect a significant difference. 
One measure of the error incurred is the variation from window to 
window when averaging various sub-patches. In an essentially 
uniform patch, all sub-patches should have the same average. As a 
test, we scanned a series of patches and averaged both using the 
new (halftone-aligned) method and using the standard method. 
Figure 1 shows results for one sample patch. Each point represents 
the average of a 52 × 52 sub-window of the same patch; sub-
windows are offset from each other by 0.15 steps in each of X and 
Y. Open squares represent simple averaging; filled triangles 
represent halftone-aligned. The standard deviation of the simple 
method’s averages was 3.6 × 10-3; the standard deviation of the 
halftone-aligned averages was 6.05 × 10-4: a factor of 6 better. 
Halftone-aligned averaging is considerably more reliable when 
estimating the average reflectance of a small patch. The variation 
across the abscissa of the graph in the triangles reflects variation 
across the patch itself (it is 1.48×10-3 – less than 1% of the mean), 
while variation within horizontal position reflects variation in the 
slow scan direction of the patch (5.31 × 10-4). Printer variation is 
the dominant cause of these variations. 

 

Figure 1. Open squares are averages computed using the simple approach; 
filled triangles are the averages computed using the new approach. The 
horizontal axis corresponds to the horizontal location of the window; the 
spread in the vertical corresponds to multiple vertical locations of the window. 

For comparison, we also measured a patch of similar reflectance 
using a Gretag spectrophotometer. We took 225 measurements, in a 
15 × 15 array of locations, spaced at the minimum (0.1 mm) 
spacing available from the mechanical stage. The values measured 
were quantized (by the device) to four values, but the histogram 
appeared close to a Normal distribution. At 2σ, the reflectance 
variation was 9 × 10-3. The corresponding figure for halftone-
aligned averaging is 1.2 × 10-3. The spectrophotometer has a 4.5 
mm diameter aperture (15.9 mm2). The scanner values were 
computed with a 2.33 mm square window (5.4 mm2). With 
halftone-aligned averaging, measurements 7.5 times more reliable 

are obtained with averaging windows of just over 1/3 the area. 
Scaling to equal sized windows, one would expect the 2σ value for 
halftone aligned averaging to be 7×10-4 using a 15.9 mm2 window. 

Integrating Cavity Effect 
Keith Knox10 first pointed out the integrating cavity effect (ICE) in 
scanners. ICE causes pixel values to be closer to the values of their 
neighbours than they would be were their reflectances measured 
independently. Part of the light reflected off the page is reflected 
back to the page, so the reflectance of the local region affects the 
apparent illumination. Ignoring ICE when measuring the scanner’s 
response to printed targets introduces unnecessary errors, likely to 
appear as noise, into the data. Depending on the arrangement of 
patches, this might introduce a systematic error into the data. 

Previous solutions to the problem of integrating cavity effect have 
been either to change the printed target, or apply a raster based 
correction. Changes to the printed target include grouping similar 
colours together, and repeating patches to randomize their 
surroundings: neither approach gives the correct result. 

Knox gave a raster based approach, which requires a large filter 
and depends on the local average changing very slowly. At the 
pixel level, it does, and hence the large filter. We use a patch-based 
approach, and hence much lower resolution. We do not require a 
slowly varying local average, and due to our lower resolution, 
apply a significantly smaller filter. The resolution is typically at 
least 60 times smaller. The approach requires possibly as many as 
5-10 iterations (depending on the scanner), but it is still 
substantially faster than full resolution filtering. 

ICE Calculation 
ICE results from an engineering compromise. To reduce power, a 
reflector focuses the light from a lamp on the page. This is true of 
most desktop scanners, and some higher end scanners. The 
reflector lamp serves as an “integrating cavity”: as Knox noted, the 
paper repeatedly reflects a fraction of the light it receives back into 
the reflecting cavity. On each bounce the light is more dispersed (in 
position) and less of it remains, as some is absorbed by the paper or 
misses the mirror. Equation (1) shows an expression for the light 
striking the page. 

I = Σk (α<R>)k = 1 / ( 1 – α <R> )  (1) 

where <R>=G*R(x) is the local average reflectance, i.e. the 
reflectance convolved with some unknown averaging kernel G; α is 
a scale factor related to the initial illumination and the mirror 
geometry, and I is the illumination at any given point. The apparent 
reflectance of a given location is then 

M(x) = R(x)/(1-αG*R(x)) (2) 

Here M must be expressed in the same units as R. There is an 
implied normalization, in that the integral of G must be unity.  

CCD based sensors have a near linear response to light, at least 
over the range used in scanners. However as Eq. (2) shows, 
scanners appear non-linear when used to measure the average 
reflectances of large constant patches. At all light levels, the  
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denominator is less than one, corresponding to the fact that the 
illumination is higher than it would be in the absence of ICE, and 
the apparent reflectance is exaggerated (non-linearly). Instruments 
designed for colour measurement do not have ICE, and hence 
measure the actual reflectance; as a result, no simple linear scale 
when applied to scanner measurements can accurately match the 
reflectance as measured by an instrument. 

ICE correction aims to find the reflectance we would have 
measured with the scanner, had we been measuring a very small 
patch, surrounded by the darkest possible black. In the limit of 
small patch sizes, the average surround approaches zero, and the 
denominator in Eq. (2) approaches 1. This is equivalent to 
measuring with an ICE-free scanner. In practice we cannot arrange 
to give every patch a black surround (and still have a reasonable 
number of non-black patches). Even if it were possible, the 
contributions of the patches themselves to ICE would introduce 
some error. If all patches had sufficiently similar surroundings to 
their own values, Eq. (2) could be inverted by assuming G*R(x) = 
R(x), but this would still be difficult near the edge of the page. 
Randomizing the surround of multiple instances of a patch does not 
produce a black “average surround”: it is closer to mid-grey. Done 
thoroughly enough, the average surround of all representatives of a 
given patch colour will approach a constant, and it might be 
possible to substitute a constant into the denominator of Eq. (2). 
However this requires many repetitions of each patch: page real 
estate that might be better used otherwise.  

Knox provided one method of correcting: assume that the local 
average reflectance is slowly varying, and calculate the reflectance 
from the local average of the measured values. The assumption of a 
slowly varying local average hinges on the width of the averaging 
kernel being large. Herloski11 derives an approximate analytical 
expression for the integrating kernel, and in the example he shows, 
the kernel exceeds 10% of its maximum value 40-60 mm from the 
centre. For a 600 spot per inch scan, this represents a filter width of 
1900-2800 pixels. The width of the filter depends on the scanning 
geometry (primarily the distance between the paper and the 
reflector), so it may not always be this large, but at this resolution 
the local average reflectance is well approximated as constant. On 
the other hand, at patch-resolution, the filter is closer to 30 pixels 
wide, which is still quite large, but the assumption of a constant 
average is weaker. In our experience, the filter is less than 10 pixels 
wide, at the low resolution, making the locally constant 
approximation untenable. 

Herloski’s expression for the shape of the kernel is separable (as 
the geometry would suggest), and based on a power series 
expansion of the integrand of a moderately complex integral. It is 
based on a simplified geometry and the resulting shape is well 
approximated by a Gaussian out to the point at which it becomes 
less than 0.25 of its original height. At this point 88% of the area 
under the kernel is accounted for. Herloski’s expression matches a 
ray traced simulation of the same geometry to within 0.033, while 
the Gaussian fits Herloski’s expression to within 0.06 over the 
entire range. Given that Herloski’s expression is specific to the 
geometry in his simulation, it seems preferable to use the more 
empirical Gaussian shape. The shape of the filter is symmetric 

along the bar direction, and asymmetric along the direction of 
motion of the scan bar (perpendicular to the axis of the mirror). 
Using the Gaussian formulation, three parameters specify the shape 
of the filter: the horizontal/fast scan direction parameter, and 
vertical/slow scan “above” and “below” parameters.  

Knox used an exponential filter, with no justification, other than 
that it appeared to work on the input with which he tried it. An 
exponential filter fits Herloski’s results rather poorly. 

Correction 
Once we have the full averaging kernel, we can reverse the process 
of integrating cavity effect.  

Assuming the average reflectance (i.e. G*R) varies slowly enough, 
we may compute it by assuming it is locally constant. Were the 
reflectance constant, it would be correct to re-write Eq. (2) as:  

M(x)=R(x)/(1-αR(x)) (3) 

Solving for R(x):  

R0(x) = M(x)/(1+αM(x)) (4) 

This gives us a first approximation of the reflectance, which we 
have superscripted with a 0. From this approximation, we may 
compute an averaged reflectance <R0(x)> as G*R0. Now given an 
approximation Ri to the reflectance and the measured value at each 
pixel, we can solve Eq. (2) for an improved approximation to the 
reflectance: 

Ri+1(x)=M(x)(1-αG*Ri(x)) (5) 

This may be repeated until the change in the image is small. The 
rate of convergence depends on α. Generally the number of bits of 
precision increases by –log2α at each iteration until it is limited by 
numerical precision or measurement noise. 

Determining the Parameters 
There are six parameters: three geometry-independent parameters 
and the three Gaussian spread parameters of the filter: two in the 
slow scan direction and one in the fast scan direction. The 
geometry-independent parameters will be discussed first. 

In a large white page, the reflectance will be the reflectance of 
white paper, Rw while the measured value M will be a constant Mw. 
The reflectance being constant, the local average reflectance will be 
Rw as well, so:  

Mw = Rw (1-αRw) (6) 

Actual scanner values are not exactly the same as apparent 
reflectances: the scanner reflectances have been scaled so that 
some arbitrary white value maps to the maximum representable. M 
= Mk+(Mw-Mk)S/255. (We assume linearity from a CCD based 
scanner). Given three or more values from large regions of constant 
colour, we obtain for each such region 
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Mk+Si/255(Mw-Mk)=Ri/(1-αRi) (7) 
 
or 
 
(1-Si/255)Mk+Si/255Mw)=Ri/(1-αRi) (8) 

For any fixed α, this may be treated as a matrix system which may 
be solved using conventional (such as SVD) techniques.  

Since α is in the 0..1 range, its value may be found by computing 
the solution to Eq. (8) for three tentative values (α0, α1, α2), and 
fitting a parabola to the residual at each of these values. If the 
parabola has a minimum in the range between the largest and 
smallest value of α, that is the next trial location. It will either be 
between α0 and α1 or between α1 and α2. In either case a new 
parabola may be fit using the new point and its two neighbours. At 
all times, an upper bound and a lower bound to the value of � 
corresponding to the minimum residual should be retained. If the 
newly fit parabola has a minimum outside the bounds, then the 
midpoint between the two values of α with the least residuals 
should be used as the new value. This should converge fairly 
rapidly, within 5-10 iterations. 

Computing the Gaussian Parameters 
To find the filter shape parameters we print a solid black page, with 
a square block of nine white “patches” near the middle. We super-
impose upon this an imaginary grid, whose grid resolution is the 
size of the white patches. In other words we have a page of many 
“patches”, all but nine of which are black. We further assume a 
super-grid of super-patches, the block of nine white patches 
composing one such super-patch. To eliminate errors due to printer 
non-uniformity, we measure the page using a densitometer at the 
low resolution grid, and then assume that the high resolution grid is 
piecewise constant. (We could also assume piecewise linear, within 
regions of constant input colour and interpolate). Scanning the 
page, and averaging over “patches” (the higher resolution ones), 
gives a set of scan values corresponding to the reflectances found 
using the densitometer. Filtering the (known) reflectance values and 
applying the expression of Eq. (1) gives an estimate of the 
measurements. Comparing the actual measurements to the 
estimated measurements provides a measure of the conversion 
quality for the set of parameters for the filter. Optimizing the 
conversion quality by varying each of the three of the filter 
parameters in turn gives the optimum set of parameters. The 
parameters may be independently optimized, however a far-from-
optimum value for one of the parameters will make the result 
relatively insensitive to changes in another.  

In addition to the black page with a group of white patches in the 
centre, we may print a white page with a group of black patches in 
the centre. This doubles the quantity of input data, and improves 
robustness. The different colour channels of the scanner should 
share the geometry-dependent values, but the white point and black 
point may differ.  

Results 
The method was tested using prints made on a Phaser 7750 and 
scanned on a prototype scanner. The values of Mk, Mw, and α were 

computed from nine large patches on a single page approximately 
equally spaced in reflectance. Values of -0.01157, 1.21078 and 
0.2177 respectively provided the best fit. The RMS error between 
the actual reflectance and the reflectance predicted with the model 
was 0.0026, while the largest error was -0.0043. For comparison, 
when the best linear fit was found to convert from scanner 
measurements to reflectance, the RMS error was 0.0173, and the 
largest was 0.031, an order of magnitude worse. 

The optimized Gaussian filter spanned seven “pixels” wide by five 
“pixels” high. Here a “pixel” is actually an averaged 2.55 mm 
region. Using that filter on the black on white and white on black 
pages, and comparing the computed reflectances with the measured 
reflectances of the 81 patches in the centre (with the contrasting 
patches in the center of the 9 by 9 block), the residual error was 
0.024 at the 95th percentile, 0.0089 RMS. For comparison, a single 
pixel filter was used (equivalent to computing M/(1+αM) but not 
filtering and iterating), the error was 0.077 at the 95th percentile, 
and 0.026 RMS. Linearly scaling the measured values to obtain 
reflectances gave a 95th percentile error of 0.158, and 0.056 RMS. 
These results show that simply applying a tone curve to the 
measurements gives a little under half the improvement, the other 
half coming from filtering. 

These values represent the worst case: one would expect that the 
arrangement of patches in an actual calibration page would be 
unlikely to create such large errors, however the largest error could 
easily be half as large as these. 

Printer Calibration 
The proof of the pudding is in the tasting; in order to test the value 
of these techniques we characterized the scanner used in the above 
experiments over a region spanning the neutral axis, and then used 
the characterized scanner to measure prints for grey balancing the 
same printer. 

Over all of the patches used in characterizing the scanner, the 
model (a 3D B-Spline) fit the data with an error of ∆E = 0.9 at the 
95th percentile, 0.42 mean, max 1.8. This only tells us how well we 
fit the input data, and not how well intermediate colours would be 
predicted. These values are significantly better than the best 
reported value from the literature: Hardeberg’s 0.92 mean and 3.36 
max. 

As a more challenging test, the scanner was used to compute grey 
balance TRCs for the printer for which the scanner was 
characterized. That is, for each of many steps along the L* axis the 
CMY yielding the colour closest to that L* with a*=b*=0 was 
found. These tone response curves are applied individually to the 
three separations. Then a series of “neutral” patches was printed 
and measured on a Gretag spectrophotometer, the figure of merit 
being the neutrality of these patches. The overall quality of the 
result depends on the stability of the printer (spatially and 
temporally), and the particular algorithm used to find the grey 
balance TRCs. Thus absolute values are less important than relative 
values. The patch size for printer calibration was approximately 
2.55 mm and multiples thereof on a side; for scanner calibration the 
minimum patch size was 5.1 mm,* but 2.55 mm subpatches were 
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used for calculating ICE correction. With neither ICE correction 
nor aligned averaging applied, using patches this small gave a very 
poor grey balance result: ∆E=12.0 at the 95th percentile, mean 
∆E=9.3. Applying only ICE correction brought it down to 4.0/1.8, 
an improvement of 66%/80%. Adding in aligned averaging reduced 
the 95th percentile error further, to 3.1, leaving the mean essentially 
unchanged (1.8). For comparison, the same printer was calibrated 
using the spectrophotometer, with results 3.2/1.5. These numbers 
do not differ meaningfully from the scanner results. 

As only a single paper stock was involved, and grey balance TRCs 
do not involve K, the ability of the spectrophotometer to produce 
spectral data rather than L*a*b* was no advantage. While the 
spectrophotometer-based grey balance measurements and 
computation involved spectral data, the results were equivalent. 

Conclusions 
We have presented three techniques for reducing the noise in scans 
of halftoned patches: variable patch size, halftone-cell averaging 
and integrating cavity effect correction. Taken together, these allow 
the scanner to operate as an acceptable surrogate for a 
spectrophotometer, when calibrating a printer, with the advantage 
of dramatically reduced measurement time. In fact, the errors we 
measured were within the repeatability of the spectrophotometer: 
the scanner may even be better than standard against which we 
measured it. 

These results are specific to calibration, a process normally 
controlled at the single-separation level, and in which the amount of 
black ink is (trivially) controlled. Results for a full characterization, 
which includes a variable amount of black ink substitution may be 
worse, although for a fixed black substitution strategy we would 
expect them to generalize. The main advantage with simple 
separation independent calibration is that the scanner needs to be 
characterized over a much smaller portion of colour space. 

With these improvements to scanner-based printer patch 
measurements, we are now able to measure much larger numbers of 
patches in a reasonable amount of time. (An A3 sheet has room for 
19,000 patches with no margin). This leads to new problems in 
effectively using this data to compute robust models of printer 
behaviour, in a reasonable amount of time. We expect to continue 
to improve our calibration results as we tackle these issues. 
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