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Abstract 
Actually in most applications, optical flow is computed from one 
luminance Y-plane and only a few methods refer to color optical 
flow. In fact, a brief analysis shows that these methods are either 
marginal approaches, whether dramatically time consuming 
techniques. Here, we propose a vectorial approach based upon a 
joint analysis of a structure tensor and a so called flow tensor, 
both computed from image derivatives. 

Introduction  
In this paper we address a still open problem, an accurate recovery 
of the optical flow from color image sequences. Currently in most 
applications, optical flow is computed from one luminance Y-plane 
and only a few methods refer to color optical flow, explicitly taking 
into account the color spaces. In fact, most works on color optical 
flow estimation are based on the extension of the Brightness 
Change Constraint Equation (BCCE)1: 

0321 =∂+∂+∂ IvIuI  (1) 

to multi-band images. A color image sequence is denoted I : x = 
(x

i
)

i=1..3 → (I
j
(x))

j=1..3 where x1 and x2 are the spatial coordinates, x3 

the temporal one and ∂
i
 stands for ∂/∂x

i
. So, the extension consists 

in applying the previous equation (1) to each I
j
 band2 and the color 

optical flow is a vector νT = (u v) such as: 
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Obviously, this system is over-determinate and three main 
strategies appear: 
• Selecting two independent equations from the system in order 

to obtain a direct estimation of ν using Gaussian elimination.2,3 
In Ref. [4], the authors assume that the quantities representing 
color under constant illumination are invariant and can be used 
for motion estimation. Consequently, two equations can be 
selected from the two chromatic bands of the HSV,4,5 YUV, 
UCS, YCbCr... color spaces.  

• Solving the system as it is, using either least squares or 
pseudo-inverse methods.2,4-6 This is in fact a direct extension  
of the Lucas and Kanade work.7  

• Separately computing the optical flow on each band using 
traditional grayscale techniques and then fuse the results to 
recover one vector field. For example, in Ref. [8] Andrews 
and Lovell simply select the estimated vector with the smallest 
intrinsic error at each point. 

A brief analysis of system (2) shows that any color optical flow 
vector ν must also be a potential optical flow vector for each scalar 
band. In that way, we can say that the proposed methods are quasi-
marginal approaches. Here, we will compute a color optical flow 
where the νT = (u v 1) vector have only to satisfy: 

0=∇ITν  (3) 

where ∇I is the multi-band color gradient direction of the vectorial 
image I. This vectorial approach is based upon a joint analysis of a 
structure tensor and a so called flow tensor, both computed from 
image derivatives. 

The paper will be organized as follows: in the first part, we briefly 
present the methods using a structure tensor for retrieving the 
optical flow in gray-level images; in the second part, we give some 
simple but useful properties concerning tensorial calculus; in the 
third part, we first point out the main drawback for a direct 
extension to color spaces, and then we present our solution using 
the properties given in part two; finally, in the fourth part, we 
discuss about results and performances. 

Optical Flow and Structure Tensor for Scalar 
Images 
As seen in the introduction, we consider a gray-level image 
sequence I and we have a first order differential characteristic given 
by the gradient vector ∇IT = (∂I1 ∂I2 ∂I3). This vector can generate9 
a structure tensor S given by: 
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The spectral elements of S are for the eigenvalues:  
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Concerning the eigenvectors, the one associated to β1
(S) is the 

gradient vector V1
(S) = ∇I. Furthermore, the subspace generated by 

the two others eigenvectors V2
(S) and V3

(S), associated to the null 
eigenvalues, is orthogonal to ∇I. So, any vector belonging to the 
kernel of S is a possible solution of the BCCE equation (1). In fact, 
V2

(S) and V3
(S) can be chosen such as the three eigenvectors  form a 

direct orthogonal basis:  
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As shown in Ref. [10], V3
(S) can then be taken as a local 

representative of the optical flow. Of course, in this purely local 
approach, the optical flow does not solve the aperture problem 
meets with the motion estimation. That is why Lauze and al.11 
propose to combine tensorial optical flow and diffusion processes 
when they want to estimate the apparent motion from image 
sequences. However we have to say that, in the present article, we 
will only focus on the optical flow extraction, and reserve the 
motion estimation question to the future. 

Some Properties of Tensors 
To simplify the presentation as a whole and in order to directly use 
them in the following, we now give a general spectral property and 
reminder about the quadratic forms.  
 
Spectral Directions Stability 
Let us consider a vector UT = (a b c) and the tensor T = U UT. The 
eigenvalues of T are β1 = a2 + b2 + c2, β2 = β3 = 0 with 
respectively the eigenvectors 
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forming a direct orthogonal basis, cf (6). 

Obviously, we remark that T1 = V1 V1
T is nothing but the original 

tensor T, so the eigenvectors of T1 will be V1
(T1) = U = V1, V2

(T1) 
= V2 and V3

(T1) = V3. In a same way, we have T3 = V3 V3
T, whose 

eigenvalues are β1
(T3) = (a2 + b2)( a2 + b2 + c2) and β2

(T3) = β3
(T3) 

= 0 with the eigenvectors 
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we call this property the spectral direction stability of the T tensor. 

Vector Projection and Quadratic Form 
Let us consider a vector U

j

T = (a
j
 b

j
 c

j
) and the tensor Q

j
 = U

j
 U

j

T. 
Otherwise, we consider the matrix element q = (U1 … U

n
)  which 

we associate the Q = q qT tensor verifying Q = ∑
j
 U

j
 U

j

T or Q = ∑
j
 

Q
j
 where Q

j
 is the tensor associated to the U

j
 vector. Now, let V be 

some vector and if we evaluate the product QV, we find the 
relation 

∑
=

=
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j
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T
j

1

)( UVUVQ  (8) 

that is the right projection of a vector V relative to the matrix 
element q, or to the set of vectors (U1 … U

n
). In a similar way, we 

can form VTQV that gives the expression ∑
j
 (U

j

TV)VTU
j
. This leads 

to a new relation 

∑
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that is the quadratic form applied to a vector V and defined by the 
matrix element q, or to the set of vectors (U1 … U

n
).  

Vectorial Computation of the Color Optical 
Flow 
Our aim is the extraction of a vectorial field representative of the 
apparent displacement in a color image sequence. We want to 
explicitly take into account the intrinsic characteristics of the color 
spaces and that for, we avoid any kind of marginal approach in the 
computation of the optical flow. So, we consider that a color 
sequence is a vectorial function denoted I : x = (x

i
)

i=1..3 → I(x) =  
(I

j
(x))

j=1..3 with the I
j
 functions that can be associated to any of the 

three different channels of most standard color spaces. We define 
the color optical flow, by extension of the BCCE equation (1) as a 
vector ν which satisfy equation (3), i.e. νT ∇I = 0. In this last 
relation, ∇I is obviously not exactly a gradient but its traditional 
extension, the multi-band color gradient direction of the vectorial 
image I. By the way of the definition, ν will be a vectorial color 
optical flow, no peculiar relation being pointed out with any 
peculiar color channel. 

From Structure Tensor to Flow Tensor 
For every band we have a first order differential element, the 
gradient vector ∇I

j
. Thus we obtain a global first order differential 

characteristic given by the matrix element g = (∇I1 ∇I2 
∇I3). A 

natural extension of the scalar case leads to build a structure tensor 
and to search for its spectral components. So we obtain a structure 
tensor given by G = g gT and equal to 
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where S
j
 is the structure tensor of the j channel, cf (4). This 

structure tensor is generally a full rank matrix, which means that G 
have three real eigenvalues generally distinct and positive. Anyway, 
β1

(G) the dominant eigenvalue and V1
(G) the associated eigenvector 

are significant of the value and the direction of the maximal 
variation. These spectral elements are so considered as the natural 
extension of the gradient in the case of color image sequences,9 and 
we have  

)(
1

GVI ≡∇  (11) 

Moreover, we can consider that ν must be in the orthogonal 
subspace generated by the two others eigenvectors V2

(G) and V3
(G). 

Unfortunately, some difficulties arise. In fact, the interpretation of 
the two last spectral directions and consequently the construction of 
a combination giving the flow as a function of these directions is 
quite tricky. For example, nothing allows to assert that the flow will 
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be linked to V3
(G) the direction associated to the smallest 

eigenvalue, because each S
j
 has two null eigenvalues and that 

forbids any extrapolation.  

To overcome these drawbacks we use the spectral directions 
stability property (7). So, and for any channel, we define F

j
 a flow 

tensor 

Tjj
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where V3
(Sj) = ν

j
 is the optical flow computed from the structure 

tensor of the j channel. From equations (6) and (7) we know that 
the eigenvalues of F

j
 are  
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and the eigenvectors are 
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Color Optical Flow 
Now and with the per-band flow tensors we build a global flow 
tensor 
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and we define ν the color optical flow as V1
(F) the direction given 

by the dominant eigenvalue, this assertion being a consequence of 
the properties previously enounced (7), (8) and (9) . A first solution 
to find β1

(F) and V1
(F) goes through finding the roots of the F 

characteristic polynomial and through resolving a linear system. In 
fact, we can use ν in conjunction with (8) and (9), or more directly 
from (14), to obtain 
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As ν is the dominant spectral element of F, we have Fν = β1
(F)ν, 

and that gives the two relations 
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which define a peculiar version of the well known iterated power 
method, using the ν

j
 optical flow vectors directly computed from 

the structure tensors of the I
j
 band. We can notice that the spectral 

direction stability assures that we will effectively satisfy (3). So, 

these two relations simply describe the core of our algorithm for the 
computation of the ν vectorial color optical flow. 

Experimental Results 
To illustrate the accuracy of the color optical flow such as defined 
in (15) we present the results obtained with a mpeg sequence 
provided by the CAVIAR project (Context Aware Vision using 
Image-based Active Recognition). In Fig. 1 we have two 
consecutive images of a corridor shopping center sequence.  

 

 

 
Figure 1. Two images from the corridor sequence 

The corresponding color optical flow are shown using a color 
convention for representing direction and intensity of the vector 
fields. We use three different algorithms to compare with our 
method: in Fig. 2, a flow computed from the Y-plane with Horn and 
Schunk algorithm1 and, in Fig. 3, a flow computed from the UV 
planes such as described by Barron5; in Fig. 4, a least square 
method2 applied to YUV space and, in Fig. 5, the same algorithm 
applied to RGB space. With our method, results were obtained with 
the implementation of the iterative process (15), the initial ν vectors 
being systematically the normalized unit vector (1 1 1) and the 
maximal iterations number being set to 20 which is generally large 
enough, the average convergence rate being around 5 iterations. We 
use both YUV and RGB spaces to show the efficiency of our 
algorithm, as we retrieve very similar color optical flow in both 
spaces as shown in Fig. 6 for the YUV space and in Fig. 7 for the 
RGB space.  
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Figure 2. Horn and Schunk: optical flow from Y-plane 

 
Figure 3. Barron: color optical flow from UV-planes 

 
Figure 4. Least square: color optical flow from YUV space 

 
Figure 5. Least square: color optical flow from RGB space 

 
Figure 6. Our algorithm: color optical flow from YUV space 

 
Figure 7. Our algorithm: color optical flow from RGB space 

 
We have to notice that our method effectively produce a significant 
color optical flow, combining results of both luminance or 
chromatic dedicated methods. Our results are comparable to those 
obtained with the least square method which is known as one of the 
more reliable. Furthermore, we observe that the motion fields 
obtained with our method seem to be more regular, i.e. more 
independent of the space color representation, than the ones 
obtained with the least square method. We also can notice that 
motion coming from the instability of the mpeg color artifacts is 

very well perceived and that demonstrates, a contrario, the color 
accuracy of our method. 

Conclusion 
In this paper we present an original and efficient method of 
computation of the color optical flow. This method uses a flow 
tensor coming from the usual structure tensor and provides a 
vectorial solution to the color optical flow question. Moreover, the 
computational cost of the algorithm is quite reasonable, due to the 
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direct computation of the tensorial per-band optical flows and to the 
fast convergence (about 5 iterations) of the iterative process. 
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