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Abstract  
We design an algorithm based on illuminant invariance theory to 
find shadow regions in a colour image. Shadows are caused by a 
local change in both the colour and the intensity of illumination. 
Using both chromaticity and intensity cues, an illuminant 
discontinuity measure is derived by which shadow edges can be 
locally identified. We model the problem of finding shadows by a 
Markov Random Field using our new measure. A graph-cut opti-
mization method is then applied to the MRF to find the globally 
optimal segmentation of shadows in an image. In previous work, a 
2-d chromaticity colour invariant image was recovered from a 
greyscale 1-d invariant image by adding back light so as to match 
the chromaticity of bright pixels. Here, since we segment shadows, 
we can take a completely different approach and leave nonshadow 
pixels unchanged, while adding light to shadow pixels so as to 
match neighbouring nonshadow pixels. The results are much more 
convincing shadow-free images, and shadow-segmentation is 
excellent.  

1. Introduction  
Many computer vision algorithms, such as segmentation, tracking, 
and stereo registration, are confounded by shadows in images. 
Hence finding or removing shadows in colour images is an 
important research issue. The problem is difficult due to the 
confounding interaction between object reflectance and 
illumination. An interesting feature of this problem is that shadows 
are approximately but accurately described as a change of lighting. 
Hence, it is possible to cast the problem of finding shadows in 
images into an equivalent statement about detecting changes in 
lighting in imagery.  

A recent method was devised for creating an illumination-invariant 
image from an input colour image,1–3 invariant to both colour and 
intensity of the scene lighting. The method is in essence a kind of 
calibration scheme for a particular colour camera. A camera is cali-
brated by imaging a target which contains a set of colour patches, 
under several different illuminants. An invariant image is derived 
based on the idea that under Planckian lighting, and for camera 
sensors that are narrowband (as for an ideal delta-function sensor 
camera) a 2-d scatter plot of the logarithms of ratios R/G versus 
B/G, say, produce a set of approximately straight lines (this is the 
case for any model of illumination that changes light colour by ex-
ponentiation of a power of temperature, T). Each line corresponds 
to a single patch of the target; each point on a line corresponds to a 
particular illuminant. For a given camera, all such lines are 
essentially parallel. We call the direction of these straight lines the 
illuminant direction. (Note that gamma-correction does not change 

the straight line theory.1) The invariant image is formed by 
projecting 2-vectors onto the direction orthogonal to this direction.  

In Fig. 1(a), the photographer’s cast shadow lies on the path and 
the grass. Fig. 1(b) plots the probability densities of the 2-d log 
ratio chromaticity points, and the illuminant direction, which is 
parallel to the red line. There are four main regions in this image: lit 
path, shadow path, lit grass and shadow grass, marked 1-4 in Fig. 
1(a), corresponding to the four main concentration peaks in Fig. 
1(b). When projecting chromaticity points into the direction or-
thogonal to the red line, the four clusters fall into two portions: one 
for lit grass and shadow grass; and the other for lit path and shadow 
path. Thus, points in shadow have the same value as points in 
corresponding nonshadow regions. Fig. 1(c) shows the result of this 
projection as a 1-d greyscale image, with shadows removed very 
well.  

Note that the projection operation eliminates not only shadow 
effects but also all information along the illuminant direction. Many 
factors affect the distribution of the chromaticity along the 
illuminant direction, such as noise and surface texture; as well, real 
cameras have non narrowband sensors — these factors can make 
the distribution complex. A straightforward observation is that in 
Fig. 1(b), the four regions have many overlapping points, although 
the majority are separated. It is expected that when points are 
projected into 1-d quantities, much information which is irrelevant 
to the illuminant will coalesce. This will prove troublesome for 
detecting edges in the invariant image, which in turn may impact 
the accuracy of shadow edge detection, and hence make localizing 
shadow regions difficult.4  

Figure 1(b) shows that the four clusters constitute two pairs, each 
of which aligns along the illuminant direction: a shadow-
nonshadow grass pair, and a shadow-nonshadow path pair. This 
leads to a general observation: rather than projecting all 2-d 
chromaticities into 1-d quantities, we can simply compare pixels on 
either side of a region edge: if their chromaticities belong to one of 
the pairs, the edge is probably a shadow edge. We call two pixels 
with a neighbour relation across a shadow-nonshadow edge an 
illuminant discontinuity pair. In this paper we propose a continuous 
angle between vectors as a criterion for measuring the illuminant 
discontinuity. We then define a Markov Random Field to model our 
binary shadow segmentation problem. The MRF approach 
combines spatial context and local chromaticity features to identify 
shadow-nonshadow edges. The segmented shadows are found via 
energy minimization of this random field using a Graph Cut 
algorithm.5 
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Figure 1. (a) Original colour image. The four main regions 1-4 are marked.  
(b) Log band-ratio chromaticities probability densities. (c) Greyscale invariant 
image. 

Previous work6 extends the illuminant invariance method from 1-d 
greyscale output to output which is 2-dimensional colour, in the 
form of L1 normalized chromaticity χ, defined as7: 

c = {r, g, b} ≡ {R, G, B}/(R + G + B) (1) 

For a Lambertian surface the 2-d chromaticity removes shading and 
intensity from images, but still conveys colour information. 
Although not a full-colour result, as in Ref. [3], the L1 normalized 
chromaticity space has still been widely used to reduce shading and 
shadow effects in some vision applications, since chromaticity 
space can indeed remove shadows due to changes in lighting 
intensity only. However, in case of shadows being caused by 
changes of lighting colour, shadows will not be eliminated (see Fig. 
4(a)). 

To obtain an invariant L1 normalized chromaticity image, the 
method in Ref. [6] consists of preserving the 2-vector components 
for the 1-d projected log ratio chromaticities, followed by restoring 
lighting to the image so as to best match the brightest pixels of the 
original image. However, the resulting 2-vectors still contain only 
1-d information—we simply shift all chromaticities on the 
projection line by a fixed amount of chromaticity, hoping to restore 
light in the shadows while at the same time matching the 
chromaticity for bright pixels. 

Here, we take another tack entirely: We first segment the 
shadow/nonshadow image using the proposed MRF. Then since 
shadow regions are indeed found we can now restore the lighting to 
pixels in shadows but leave the chromaticity outside the shadow 
unchanged. This should produce a much more convincing 
chromaticity image for the invariant image since we leave 
untouched information we do not in fact wish to alter. Our 
approach is to evaluate an offset for a shadow pixel by calculating 
the distance between shadow and nonshadow points in the log ratio 
space, and then apply the offset to shadow points so as to move 
their log ratios to the corresponding nonshadow ones. Thus, the 
resulting chromaticity image resists shadow effects but leaves 
nonshadow regions unchanged. 

2. Illuminant Invariant Formation 
We recapitulate how linear behaviour with lighting change results 
from the assumptions of Planckian lighting, Lambertian surfaces, 
and a narrowband camera. Consider the RGB colour 3-vector ρ 
formed at a pixel with illumination with spectral power distribution 
E(λ) impinging on a surface with surface spectral reflectance 
function S(λ). If the three camera sensor sensitivity functions form 
a set Q(λ), then we have 

ρk = σ  ∫ E(λ)S(λ)Qk(λ)dλ, k = R, G, B, (2) 

where σ is Lambertian shading: surface normal dotted into 
illumination direction. 

If the camera sensor Qk(λ) is exactly a Dirac delta function Qk(λ) = 
qkδ (λ − λk), then Eq. (2) becomes simply 

ρk = σ E(λk)S(λk)qk, k = 1 . . . 3. (3) 

Now suppose lighting can be approximated by Planck’s law, in 
Wien’s approximation7 
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with constants c1 and c2. Temperature T characterizes the lighting 
colour and I gives the overall light intensity.  

In this approximation, from Eq. (3) the RGB colour ρk, k = 1. . . 3, 
is simply given by  
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Let us now form the band-ratio 2-vectors r,  

rµ = ρµ/ρp, (6) 

where p is one of the channels and µ indexes over the remaining 
responses. We could use p = 2 (i.e., divide by Green) and so 
calculate r1 = R/G and r2 = B/G. We see from Eq. (5) that forming 
the chromaticity effectively removes intensity and shading 
information. If we now form the log of Eq. (6),  

r′µ ≡ log(rµ) = log(sµ/sp) + (eµ – ep)/T, µ = 1,2 (7)  

with sµ ≡ c1λµ
−5S(λµ)qµ and eµ ≡ −c2/λµ. Thus Eq. (7) is a straight 

line parameterized by T. Notice that the 2-vector direction (eµ − ep) 
is independent of the surface — it captures the illumination 
direction.  

The invariant image is that formed by projecting 2-d logs of 
chromaticity, r’µ,µ = 1,2, into the invariant direction e⊥ orthogonal 
to the vector e ≡ (eµ − ep). The result of this projection is a single 
scalar which we then code as a greyscale value.  

The utility of the invariant image is that it reveals how the changes 
of lighting cause shadow effects, and provides a way to factor the 
interaction between the lighting and surface in the log ratio 
chromaticity space, such that lighting changes can be removed in 
the resulting invariant image.  

3. Illuminant Discontinuity Measure  
From the above section, we see that two pixels of a single surface 
under two different lights will align with the direction (eµ − ep) in 
the log ratio chromaticity space. In the image space, on the other 
hand, they will appear with different intensities, and thus the 
shadow effect occurs. If these two pixels are close to each other in 
the image, they are an illuminant discontinuity pair. Now, we are 
aiming at specifying a criterion by which illuminant discontinuity 
pairs can be determined.  

For a particular camera, the illuminant direction can be computed 
either by a pre-calibration scheme3 or an automatic entropy 
minimization method.4 We denote the illuminant direction 2-vector 
by e0. Suppose a pair of pixels {i,j} are neighbouring in the image 
and have quite different intensities; we now try to measure how 
close to e0 is the direction of the vector linking the two pixels in the 
log feature space. We give a high score to a linking vector with 
direction similar to e0, and so propose an illuminant discontinuity 
measure  

0
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where eij is the vector linking the two log ratios of neighbouring 
pixels i,j. We take the absolute value of the cos because we 
consider only the angles between 0 and π/2.  

The utility of the discontinuity measure is that it is continuous, 
rather than a discrete {admit/reject} variable, and will prove 
beneficial in the later graph cut optimization for finding shadows. 

4. Finding Shadows Using MRF and Graph Cut 
Optimization 
Now we try to assign labels (shadow and nonshadow) to pixels 
based on the illuminant discontinuity measure. In the label 
processing, the labels tend to vary smoothly within the image 
except at region boundaries, where discontinuities occur. The fact 
that a particular pixel label depends on the labels of its neighbours 
allows modeling the optimization problem as a Markov Random 
Field. The MRF-based segmentation model is defined by the 
contextual relationships within a local neighbourhood structure. 
Since our goal is the assertion of local discontinuity constraints, we 
will consider only first order random fields, both simplifying the 
model and limiting the computational complexity.  

The formulation of our MRF model will be similar to others used 
for segmentation except for a number of variations due to the 
characteristics of our illuminant discontinuity measure. Suppose we 
are given a colour image pixel set X = {i}, on a first order 
neighbourhood system represented by a set N of all unordered 
pairs, and each site i takes a label li in L = {0,1}, with {0,1} 
denoting labels “shadow” and “nonshadow”. Then we use a Potts 
cost function to describe the MRF model:  

 (9) 
and 

                 

The data term Di states that the costs for assigning pixel ito 
“shadow” and “nonshadow” are respectively Di(0) and Di(1). The 
term Bij reflects the discontinuity property between i and j. 
Normally, Bij is large when pixels i and j are similar, but Bij is close 
to zero when a discontinuity occurs between them. Finding the best 
labeling forms an optimization problem. The binary labeling prob-
lem for the Potts energy function as formulated above can be 
solved, optimally, by a single execution of the Graph Cut 
algorithm5 to find the max-flow solution. For the purpose of using 
graph cuts, we create a graph with nodes corresponding to pixels. 
There are two additional terminal nodes: a “shadow” terminal (a 
source) and a “nonshadow” terminal (a sink). All the links in the 
neighbourhood system N are edges in the graph. These edges are 
called n-links. Edges between pixel nodes and the terminal nodes 
are added to the graph and called t-links. These t-links are assigned 
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costs based on the data term Di, while n-links are assigned costs 
based on the boundary term Bij.  

In our shadow labeling problem, there is no cue to indicate the 
likelihood of a shadow or nonshadow label for each individual 
pixel, so we assign the same cost to each t-link, thus actually giving 
up the data term in the model, for t-links. The data term thus 
imposes no influence on the later minimum-cut calculation. Now 
the task is to find the shadow-nonshadow graph cut and a label for 
each pixel node, by setting the cost for n-links. For this purpose, we 
use directed n-links (i, j)and (j, i) between neighbouring pixels i 
and j (see Fig. 2).  

 
Figure 2. Two nodes with directed n-links.  

The cost function Bij can be defined as:  

Bij = K – κij(Ij – Ii) (10) 

and  

K = max{i,j}∈N
 κij|Ii – Ij| 

where Ii and Ij are intensities at pixels i and j so as to incorporate 
both gradient direction and gradient magnitude. A minimum cut is a 
subset of edges that separates the source “shadow” from the sink 
“nonshadow” where the sum of its edge costs is minimum. This 
cost function Bij > 0should be interpreted as penalty for a cut 
between i and j. From Eq. (10), Bij gives a high penalty to a cut 
between pixels which have small illuminant discontinuity measure 
or similar intensities. Neighbouring pixels with high positive 
intensity gradient and high illuminant discontinuity correspond to 
low-cost n-links, which are attractive choices for the optimal 
segmentation boundary. However, the penalty Bij is much increased 
when the intensity gradient is negative, i.e. Ij −Ii < 0: this forces the 
“shadow” and “nonshadow” labeling for neighbouring pixels to be 
consistent with their intensity gradient direction — dark pixels stay 
in shadow and bright pixels stay in nonshadow segments. Figure 3 
shows shadows found for the image in Fig. 1(a). Results are 
excellent.  

 
Figure 3. Shadows found using graph cut.  

The model Eq. (10) gives us a coherent representation of the 
labeling problem by incorporating both illuminant colour and 
intensity constraints. However, it omits one important point: not all 
shadow-nonshadow pairs have low cost. As we have mentioned, 
shadows result from changes in colour and intensity of the scene 
lighting. If, in some conditions, intensity changes dominate shadow 
generation, i.e. the contribution of illuminant colour change to the 
shadow effect is very small, the log ratio chromaticity space will of 
itself be able to greatly attenuate shadows, leading to shadow-
nonshadow pairs with similar chromaticities. Two very close 
chromaticities will result in a nearly random measure κ, which in 
turn make the link cost untrustworthy. To overcome this drawback, 
we introduce a threshold τ for the distance between two points in 
the log ratio chromaticity space, such that if their distance is less 
than τ, we do not evaluate the discontinuity measure.  

But we still have to assign a value to the κ for setting the n-link 
cost. We have two choices: κi,j = 1 and κi,j = 0, for two 
neighbouring pixels i and j which are close in chromaticity space. 
The former setting — for two neighbouring pixels with similar 
chromaticities but large intensity gradient — will be linked by a 
low cost edge such that a cut is prone to happen there. This setting 
is based on the fact that if a region has a lower intensity than its 
neighbouring region, but has the same chromaticity, the region is 
probably in shadow. On the other hand, if we choose the latter 
setting, a pure intensity change will not be considered as due to a 
shadow and the cost function will put a high penalty on a cut 
happening on the link. For images where the shadow is completely 
caused by intensity changes we segment the shadow by choosing 
the former setting.  

The minimum cut can be computed exactly in polynomial time 
using well known algorithms for 2-terminal graph cuts, e.g. max-
flow.8 The primary drawback is that texture and noise may confuse 
the discontinuity measure. To remove these factors, the Mean Shift 
method is used to filter the image first, and edges are then detected 
on the filtered image. Our illuminant discontinuity criterion and 
intensity gradient is calculated on only these edges, yielding a fast 
n-links cost computing. A second undesired effect is that shadow 
edges usually are not sharp but diffuse, so that the chromaticity of 
neighbouring pixels may be too close. To overcome this effect, for 
two pixels across an edge the illuminant discontinuity criterion is 
calculated using the means of blocks of pixels on the two sides of 
the edge.  

5. Shadow-Free Chromaticity Image  
Drew et al.6 formed an invariant L1 normalized chromaticity (χ in 
Eq. (1) for a colour image based on the projected 1-d log ratio 
chromaticities. This is 2-d colour since  

 

Figure 4(a) shows the χ image: the shadow is clearly visible. Here 
we propose a new scheme to build the chromaticity image which 
puts lighting back into the shadow pixels but preserves the original 
nonshadow chromaticity.  
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Figure 4. (a). Original chromaticity image. (b). Shadow-free chromaticity 
image.  

We make a simple yet in practice important observation. Consider a 
surface under two different lights, with temperatures Ta and Tb 
respectively. From Eq. (7), we have two log ratio chromaticity 
vectors:  
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with µ =1, 2. Subtracting,  

),/1/1()('' bapba TTeerr −−=− µµµ  (12)  

so, clearly, the distance between the two chromaticity vectors 
depends on only the illuminant change. Thus we can estimate a 
single offset vector based on the distance between the shadow and 
nonshadow points in the log ratio chromaticity space, and then put 
back the offset to shadow points so as to move their log ratio 
chromaticities to the nonshadow ones. To do this, we collect a 
number of pixels inside and outside the shadow boundary, calculate 
the mean vectors for the shadow points and the nonshadow points 
respectively, and then subtract the local shadow mean vector from 
the nonshadow one to obtain the offset vector r’offset. We now can 
add the offset vector locally to the shadow chromaticities, and then 
go to exponentiated values:  
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The result is band-ratio chromaticity. To obtain L1 normalized 
chromaticity χ, we have from Eq. (1) that  
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so that in fact knowing r gives us χ as well. Fig. 4(b) shows the 
effect of restoration of the 2-vector offset required to put the 
nonshadow lighting back into the recovered chromaticity. We see 
that the method indeed does very well, compared to the shadowed, 
original version Fig. 4(a).  

6. Additional Experiments  
Figures 5 and 6 show more results. Using MRF and graph cut 
techniques, shadows can be extracted fast, and accurately. Adding 
back light into just the shadow regions produces an excellent 
shadow-free chromaticity image.  

7. Summary  
We have presented a Markov Random Field-based model for 
finding shadows. This model uses an illuminant discontinuity 
measure criterion along with intensities for labeling shadows using 
graph cut optimization. Based on the shadow regions found, we 
form an L1 normalized chromaticity image which greatly attenuates 
shadow effects while keeping nonshadow pixels unchanged. 
Results are seen to be excellent. However, the images we tried all 
have shadow regions good for the task at hand: large area, sharp 
boundaries, and relatively clean background. One problem not 
addressed so far is how well the method performs in more 
complicated scenes. Also, we evaluate the illuminant discontinuity 
measure based on prior knowledge of the illuminant direction, 
which may not be accurate. In future work, we shall use the 
shadows found to adjust the illuminant direction, and iterate to 
produce an optimal solution for both shadows and lighting.  
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