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Abstract  
The set of metamers for a given device response can be calculated 
given the device’s spectral sensitivities. Knowledge of the metamer 
set has been useful in practical applications such as colour 
correction and reflectance recovery; and also in furthering our 
understanding of aspects of colour science such as the tendency of 
metamers to cross at certain preferred wavelengths. 
Unfortunately, the device sensitivities of a camera or scanner are 
not known and they are difficult to estimate reliably outside the 
lab.  

The main contribution of this paper is to show how metamer sets 
can be calculated when a device’s spectral sensitivities are not 
known. The result is built on two observations: first, the set of all 
reflectance spectra are convex combinations of certain basic 
colours which tend to be very bright (or dark) and have high 
chroma. Second, the convex combinations which describe 
reflectance spectra result in convex combinations of RGBs. Thus, 
given an rgb it is possible to find the set of convex combination of 
the RGBs of the basic colours which generate the same rgb. The 
corresponding set of convex combinations of the basic spectra is 
precisely the metamers set.  

The practical import of this result is that the theory of metamer 
sets can be used without the need for difficult and tedious 
calibrations. Experiments validate our approach.  

1. Introduction  
Colorimetric device calibration is the problem of estimating the 
responses of a device A in the space of a second device B. As an 
example, if device A is an rgb camera and its responses to a given 
scene are contained in an rgb image; then colorimetric calibration 
is the problem of estimating a mathematical transformation of the 
image data to the space of device B. The latter might be the 
human’s XYZ space or a monitor’s RGB space such as sRGB.  

The process of integrating the continuous light signal reflected of 
an object to a device response is linear. This linearity has for a 
long time been the motivation for employing linear transforms to 
the problem of colorimetric device calibration. It is, however, 
known that; for a linear transform to perfectly map the responses 
of device A to the space of B the sensor curves of A must span the 
same space as those of B. A camera whose spectral sensitivities 
are a linear combination of the colour matching functions1 is said 
to satisfy the Luther condition2 and is colorimetric.  

Although colour scanner and camera manufacturers strive to 
achieve colorimetric colour reproduction, they have to take into 
account other design factors such as noise amplification and 

manufacturing limitations.3 The result of the design compromise is 
that cameras and scanners are not perfectly colorimetric and linear 
transforms fall short from being the ideal solution for the problem 
of colour correction.  

Several methods have been exploited to improve upon the 
performance of linear transforms. These methods include: 
constrained linear transforms,4 polynomial fitting,5 look up tables5 
and local linear transforms. Unfortunately, all these techniques 
have their own limitations; some of which are practical, i.e. relate 
to technique’s performance while others are theoretical. As an 
example of the practical limitations, polynomial transformations 
are known to perform well for the calibration target but may not 
generalize adequately on other data. But, our main criticism is that 
these methods represent (albeit useful) heuristics and they fail to 
shed light on the underlying problem.  

Finlayson and Morovic6,7 developed a theory of metamer sets 
which provided a strong fundamental basis for color correction. 
They showed that given a single rgb there is a corresponding 
metamer set of reflectances that might have induced the rgb (where 
we assume the spectral sensitivities of the device is known as is 
the prevailing lighting conditions). This metamer set when 
projected onto the target sensitivities (e.g. XYZ colour matching 
functions) is usually non singular: a single rgb maps to a convex 
set (a convex polygon in XYZ space) of xyzs. Algorithms were 
presented for recovering metamer sets and also for selecting the 
best metamer to represent the set. It is this single reflectance 
which, when projected onto the target colour space, is the endpoint 
of colour correction. Experiments validated their method with 
significantly improved correction being reported with marked 
improvement with saturated colours.  

Unfortunately, the calculation of metamers requires knowledge 
about the camera’s spectral sensitivity curves. These are typically 
not known. Moreover, they are very difficult to estimate. In certain 
restricted cases a monochrometer might be used to measure the 
system response to different monochromatic spectra (in effect we 
run a colour matching function with a camera). However, 
monochromaters are expensive and the experiment is tedious to 
carry out. Alternatively, given a reference target (such as a Mac-
beth Colour Checker) one can infer the spectral sensitivities. 
While this method can work the approach is subject to significant 
numerical errors and in some cases the estimated sensitivities can 
be quite different than the true sensor curves. This problem can be 
mitigated in part by solving for the set of all plausible sensors,8 
But, ultimately a single set must be chosen and this may still be 
the wrong choice.  
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The main contribution of this paper is to show how metamer sets 
can be calculated when the device’s spectral sensitivities are not 
known. The result is built on two observations. First, the set of all 
reflectance spectra are convex combinations of certain basic 
colours which tend to be very bright (or dark) and have high 
chroma. Second, the convex combinations which describe 
reflectance spectra result in convex combinations of RGBs. Thus, 
given an rgb if we can find the set of convex combination of the 
RGBs for the basic colours which generate the same rgb then the 
corresponding set of convex combinations of the basic spectra is 
precisely the metamers set.  

2. Background  
The response of a linear sensor to a spectral stimulus can be 
modelled as:  

 (1)  

where E is a diagonal matrix whose diagonal elements are the 
intensity of the scene’s illumination at each discrete wavelength 
i.e. E = diag(e), s is the surface reflectance, ri is the camera 
sensitivity vector at channel i, and T is the matrix transpose 
operator. Spectral functions are adequately represented by 
sampling at 10 nanometer intervals across the visible spectrum: 
400 to 700 Namometres.9 Hence e, s and r are 31 × 1 vectors. 
Writing,  

 (2)  

we can write the sensor response to a spectral stimuli as:  

 (3)  

where R is a (31 × 3) matrix whose columns are the red, green and 
blue sensitivities of the camera respectively and p is an 1 × 3 
camera response vector.  

In Equation (3) the colour signal c is an 1 × 31 dimensional vector 
while the response of the device is 1 × 3. This property means that 
the sensors of a camera collapse the information in the colour 
signal from a 31dimensional space onto a much lower dimensional 
space, normally 3-d. As a result of this projection, it is impossible 
to exactly recover the spectral information of a surface based on 
the 3dimensional camera response, as many spectrally different 
signals can integrate to a single response triplet when projected 
down to the 3-dimensional space.  

Surfaces which integrate to the same camera response are said to 
be metameric to each other.10 Further, as Horn pointed out11 the 
metamers of one device are different to those of another unless 
both devices are within an exact linear combination of each other.  

Let us consider a camera’s response to a single surface, cT ,such as 
that in Equation (2). It is possible to decompose cT into two 
components, one in the range of R (it integrates to a non zero 
response), and another in its null space (it integrates to 0), i.e.:  

 (4) 

Mathematically, for a m × n matrix A, the range12 is defined as:  

 (5) 

and the null space12 of A is defined as:  

 (6)  

From the definitions in Equations (5) and (6), we are able to state 
that for a vector cT

ra
 in the range of R we have:  

 (7) 

while for cT

nu
 in the null space of R we have:  

 (8) 

In Equations (7) and (8) we have decomposed a surface cT into cT

ra
 

+ cT

nu
 into c. The vector cT

ra
 is sometimes called the fundamental 

metamer, while cT

nu
 is known as a metameric black.13 The 

fundamental metamer must be unique since any vector in the range 
of A will project to a unique point. And, because metameric blacks 
project to a unique point we can add them arbitrarily to create new 
metamers.  

Suppose now we wish to solve for the set of all metamers that 
induce a given response. We write this set as Q(p) and we can 
describe the members of this set in the following way:  

 (9) 

In Refs. [7] and [14], it was proved that this set of metameric 
surfaces, is convex and closed.15  

As is evident from the set defined in Equation (9) the calculation 
of the metamers requires knowledge of the sensor curves.  

In the remaining parts of this paper we demonstrate that it is 
possible to solve for the set of all metamers associated with a 
given rgb camera response without having to know the device’s 
spectral sensitivities. 

3. Finding Metamer Sets Without Sensor 
Curves  
Our result is based on two insights. First that the set of all 
reflectance spectra can be written as convex combinations of a set 
of basic reflectances (e.g. such as those found on a reference 
colour chart). Second, the convex combinations that model 
spectral interactions map to the same combinations in the RGB 
domain: 0.5 * red + 0.5* yellow (in the spectral domain) results in 
an RGB which is 0.5 * RGB (for red) + 0.5 *RGB (for yellow).  
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We next give the required background concerning convexity. This 
is then used to develop a method to solve for metamer sets when 
the spectral sensitivities of the device are not known.  

3.1. Convexity Results  

Definition: A set Q in Rn is said to be convex if for every x and y 
in Q, the line segment joining x and y also lies in Q.  

A line segment going from point x to y can be defined as:  

 (10)  

Therefore, a set Q in Rn is convex if and only if for every x and y in 
Q and every λ with 0 ≤ λ ≤ 1 the vector λy + (1 – λ)x is also in 
Q.16 

Let us consider a colour signal, c, which is defined as a convex 
combination of two signals, namely, c1 and c2 to which we have 
measured camera responses p1 and p2. We can write c as:  

 (11) 

From Equation (3) we know the camera response to c1 can be 
written as:  

 (12) 

If we scale c1 by λ then the response is a scalar multiple of p1, i.e.,  

 (13) 

If the second colour signal, c2, was multiplied by 1 − λ then its 
corresponding response can be written as:  

 (14)  

By making use of the second fundamental property of a linear 
system, i.e. additivity17 we can group Equations (13) and (14) as:  

 (15) 

By substituting c from Equation (11) in Equation (16) we get:  

 (16)  

The response:  

 (17)  

is a point in the three dimensional rgb space which lies on the line 
connecting p1 and p2. Further, in the case of Equations (11) and 
(17), it appears that the weights λ and (1 − λ) which relate c to c1 
and c2 are identical to those which relate p to p1 and p2.  

Finally, for completeness we remark that λ ∈ [0, 1]. If say λ = 0.5 
then we can simulate the formation of a new colour signal by 
painting half of a canvas c1 and the other half c2. Viewed from a 
far enough distance this canvas will map to a single measurement 
point and it would be as if the scene contained 0.5c1 + 0.5c2. Of 
course we cannot have less than 0% or more than 100% of 
something present. 

3.2. Solving for the Metamer Set  
In the last section we showed that a convex combination of spectra 
results in a convex combination of responses. While the result was 
written for 2 spectra it generalizes to n spectra. We can write 

  

where p
i
 is the rgb response of the ith colour signal. Of such that: 

course the colour signal results from a light multiplying 
a surface and so the above equation really is informing us that the 
underlying reflectances are written as convex combinations. Since 
these will not change with illumination it is useful to think of 
modelling reflectance as a convex combination of basic 
reflectances:  

 

The reflectances s
i
 might be reflectances from a colour chart. More 

usefully however the reflectances s
i
 will lie on the convex hull of 

measured reflectances. Since all points inside a convex body can 
be written as a convex combination of points on the boundary (i.e. 
vertices). Experiments suggest that all reflectances can be written 
as a linear sum of 8 basis functions. However, in an 8 dimensional 
space the convex closure of all reflectances requires > 8 vertices. 
In our experience, we can represent the set of all spectra as a set of 
a few 10s of basic vertex spectra.  

Let us use the 24 reflectances on a Macbeth colour checker as our 
basic reflectances. The corresponding RGBs are shown in Figure 
(1). For a new point, such as the one shown in the figure, we 
would like to calculate all the possible convex weights. From the 
forgoing discussion this set corresponds to the set of all 
reflectances that induce the RGB; and, is in fact the Metamer set. 

 

Figure 1. A set of 24 rgb calculated based on the responses of the Sony DX 
camera to the surfaces of the Macbeth Color Checker are shown as the solid 
black discs. Further, a point inside is shown as a black ring.  
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Mathematically, we wish to solve for all the weights λ
I
 such that: 

 (18) 

 (19)  

where m is 24 in our example. In matrix format, it is possible to 
write the system in Eq. (18) as:  

 (20) 

where p is a 3 × 1 vector, P is a 3 × m matrix, λ is a m × 1 vector, 
1 and 0 are m × 1 vectors.  

To solve for the set of all vectors λ which would satisfy the system 
in Eq. (20) we note that each inequality in Eq. (20) defines a 
hyperplane. A hyperplane, defined by an inequality of the form ax 
≤ b, divides the space into three parts, the first, contains the 
vectors x which satisfy the inequality, i.e., ax < b, the second is the 
space of all the weights which violates the inequality, i.e. ax > b 
and the third, satisfies the equality, i.e. ax = b. For a linear system 
of equalities and inequalities, as the one defined in Eq. (20) 
intersecting all the hyperplanes results in a closed and convex 
region, which is the space of all feasible solutions to the system. 
Using computational algorithms such as quickhull18; it is possible 
to solve for the region of all feasible solutions to a system such as 
the one described in Equation (20). Having done that we need only 
apply the weights to the set of surfaces available from the 
calibration data.  

We note that in the traditional metamer set formulation,7,14 
additional constraints need to be imposed on the feasible space 
these are: nonnegativity, smoothness as well as a constraint to 
restrict the maximum value of a colour signals to be less than one. 
In our proposed formulation no additional constraints are needed. 
The proposed formulation constrains a colour signal to be defined 
inside the space of the available calibration signals. Thus the 
recovered signal is guaranteed to satisfy the previously mentioned 
constraints. 

4. Results  
To test our method we generated a set of 24 responses based on 
the spectral reflectances of the 24 patches Macbeth Color Checker 
and the spectral sensitivities of the MegaVision camera. For the 
calculations equienergy illumination was assumed.  

As a test data we used the camera’s responses to the 264 surfaces 
of the Esser calibration chart.19 In this section we include the 
results for the reflectance shown in Figure 2. Based on the 
formulation presented in the previous section we recovered the set 
of all weights λ which results in exactly the same rgb response. 

When those weights were applied in the spectral space, we 
recovered the metamer set. In Figure (3) we plotted the maximum 
and minimum values of that set as well as the actual reflectance. 
The corresponding colorimetric values were calculated for each 
reflectance from Figure (3), we arrived at the xyz metamer cloud 
shown in Figure (4). Finally, the metamer cloud in chromaticity 
space is shown in Figure (5).  

 
Figure 2. A test reflectance to which we wish to calculate all the metamers 

 

 
Figure 3. The metamer set in the spectral space.  

 

 
5. Conclusions 
In this paper we presented a novel method to calculate the 
metamer set with the advantage that; knowledge of device spectral 
sensitivities is not required. 
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Figure 4. The metamer cloud in the xyz space. 

 
Figure 5.The metamer could in the xyz space. 

The result is built on two observations: first, the set of all 
reflectance spectra are convex combinations of certain basic 
colours which tend to be very bright (or dark) and have high 
chroma. Second, the convex combinations which describe 
reflectance spectra result in convex combinations of RGBs. Thus, 
given an rgb it is possible to find the set of convex combination of 
the RGBs of the basic colours which generate the same rgb. The 

corresponding set of convex combinations of the basic spectra is 
precisely the metamers set.  
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