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Abstract 
In this paper, a method for generating reflectance spectra from 
camera signals is proposed. It consists of two main steps. The first 
step is to characterize the camera by estimating the mapping 
matrix from colour signal directly to reflectance using a training 
data set including camera signals and their reflectance functions. 
The second step is to construct a new reflectance function based 
on the one generated in the first step via a constrained least 
squares method. The great advantage of this method over 
conventional methods is without knowing the information of 
camera sensors and illuminant. The method together with the 
conventional methods such as those developed by Wiener, and 
Hasegawa and Fairchild were tested using two types of data sets: 
the simulated and real camera data. The results showed that the 
new method outperformed the conventional methods, especially for 
the real camera data 

Introduction 
With large progress in recent development of digital colour 
cameras, they are now being applied for measuring colours of the 
surface objects. Some systems have already achieved satisfactory 
results.1,2 They have advantages over the conventional colour 
measurement instruments by capturing the total appearance of the 
object including colour, texture, glossy and other factors. They also 
have little restriction on the size and shape of objects and the 
uniformity of the surfaces.  

The major requirement for a colour measurement instrument is its 
high repeatability and accuracy. However, when capturing the same 
scene or object, the output RGB signals from different cameras or 
from the same camera with different settings such as shutter speed 
and exposure are not the same. The way to overcome the problem 
is known as device characterisation, which converts a camera’s 
RGB signals to the CIE tristimulus values. The overall performance 
of a camera characterisation is dictated by the mathematical model. 

Most methods are based on a simple 3 by 3 linear transform,3 i.e., 

 Mcf =  (1) 

where cT = (R G B) is the camera response and fT = (X Y Z) is the 
vector consisted of the tristimulus values, and M is a 3 by 3 matrix. 
Here the superscript T stands for the transpose of a vector or 
matrix. The matrix M can be determined through some training data 
sets. More accurate results can be obtained by using a higher order 
of the camera response.4,5 When a higher order is used, the matrix 
M in Eq. (1) will be 3 by m. It was found that linearization to the 
camera response improves the accuracy when M  is 3 by 3. 

However, the linearization does not result in accuracy improvement 
when m is increased to 11 (second order) or 20 (third order) or 35 
(forth order). This is because the nonlinear relationship is already 
taken into account by building the mapping matrix M. The spectral 
reflectance function of the object can be estimated using methods 
such as the Hasegawa and Fairchild,6 denoted as HF method, and 
Wiener7,8 method based on the computed tristimulus values using 
Eq. (1). Another approach6 for the colour correction is based on the 
assumption that camera response c and the reflectance function r of 
the object have a linear relationship: 

Qrc =  (2) 

where the column reflectance vector r has n components and Q is a 
3 by n matrix which is dependant on the spectral power distribution 
of the light for illuminating the object and three CCD sensors of the 
camera. Normally, the sensors are not available, and can be 
estimated.9-11 Thus when Q is available, the spectral reflectance 
function r can be estimated using methods such as those of Wiener 
and HF. 

Now it is clear that both approaches for generating the spectral 
reflectance function have two steps. The first step includes estimate 
M or Q, and the second step reconstructs the spectral reflectance 
function. In reality, each step will inevitably introduce error. The 
method in the second step is more sensitive to the error made in the 
first step. Thus, the reconstructed spectral reflectance function may 
largely deviate from the real reflectance function measured by a 
spectrophotometer. By observing Eq. (2), we have r ≈ Q+c, where 
Q+ is the generalized inverse of the matrix Q. This motivates us to 
consider directly to build a matrix W based on the training data set 
so that:  

 )(cWvr =  (3) 

where )(cv is a column vector and is a function of the camera 
response c . For example, the simplest format for the vector 
function is ccv =)( . It is believed that this approach for generating 
spectral reflectance function will be more accurate than the two 
earlier approaches. In the next section, methods will be introduced 
to obtain the vector function )(cv , and the matrixW . Finally, newly 
developed method will be compared with the other two methods. 

The New Method 
The proposed method includes three steps. Step one defines the 
vector function )(cv . Step two derives the matrixW . Step three 
calculates the spectral reflectance function.  
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The vector function )(cv is defined by the polynomial equation.5 In 
order to relate the order k of the polynomial, the vector function 

)(cv is denoted by )(cvk , and is defined below.  

Definition for )(cvk   

 ccv =)(0 , ⎟
⎠
⎞

⎜
⎝
⎛=
c

cv
1

)(1 , ⎟
⎠
⎞

⎜
⎝
⎛= −

k

k
k u

cv
cv

)(
)( 1 , (4) 

ku  is a column vector and each element of it has the form of 
321 jjj BGR  with kjjj =++ 321  , and all 1j  , 2j , 3j  being non 

negative integers. 

Note that camera response R , G , B  signals must be scaled within 
the range of zero and one before the calculation of the vector 
function )(cvk .  

Now we consider deriving the mapping matrix W  based upon 
some training data. Suppose that there are p  colour patches and 
their reflectance vectors )( jr and camera signals )( jc  are available. 
Let  

],,,[ )()2()1( prrrS Λ= , )](,),(),([ )()2()1( p
kkk cvcvcvV Λ=  (5) 

Then, the matrix W should satisfy 

WVS =  (6) 

Now a vector operator: vec is introduced, which is operated on a 
matrix, for example S , giving a column vector )(Svec  defined by 

( )TpTTT rrrSvec )(,,)(,)()]([ )()2()1( Λ=  (7) 

Thus, if we let  

)(Svecs = , )(Wvecw = , n
T IVA ⊗=  (8) 

then it can be shown from Eq. (6) that 

sAw =  (9) 

Here, operator ⊗  is the Kronecker product operator12; nI  is the 
identity matrix of size n  and n  is the number of elements of a 
reflectance vector. The linear system of equation (9) may have no 
solution in normal sense, but it always has a least squares solution. 
Besides, some constraints can be added. For example, it is possible 
to map bc  (the black) and wc  (the white) camera signals to their 
exact spectral reflectance vectors br  and wr  respectively. Let  

],[ wbE rrS = , )](),([ wkbkE cvcvV = , 

 )( Ee Svecs = , n
T
EE IVA ⊗=  (10) 

then we have the equality constraint: 

eE swA =  (11) 

Furthermore, the solution in a certain range can be assumed, for 
example, w  must not be less than Lb , and must not be greater 
than Ub . Here Lb and Ub are pre-specified lower and upper bound 
vectors. Thus, for finding the matrixW , the following constrained 
least squares problem is to be solved. 

The Constrained Least Squares Problem for Finding Matrix 
W  

 2|||| sAw
w

Min −  

 Subject to: eE swA = , UL bwb ≤≤  

Note |||| yx − is the Euclidian distance of the two vectors x  
and y . 

Finally, the reconstruction of the spectral reflectance function for 
any given scaled camera signal vector c can be carried out. It 
seems that Eq. (3) can be directly used for obtaining the spectral 
reflectance vector r . However, the resultant spectral reflectance 
function using Eq. (3) may include some values outside the range of 
0 and 1. In order to overcome this problem, the following 
constrained least squares problem is proposed again: 

The Constrained Least Squares Problem for Reconstructing 
Spectral Reflectance Function 

 2||)(|| cvv
v

Min
k−  

 Subject to: 10 ≤≤ Wv  

Note that 0 and 1  here represent vectors with all elements being 
zero and one respectively. 

Testing Methods’ Performance 
The performance of the above proposed method is compared with 
the Wiener, and HF methods using the simulated and real camera 
data in this section. 

The Simulated Data 
Firstly, camera sensitivity and three sensors shown in Figures 1 and 
2 respectively, and the spectral power distribution of the D65 were 
used to calculate the camera weight Q . Three sets of reflectance 
data were used. They were measured from the Munsell colour book 
(Munsell, 1560 samples), a set of textile samples (Textile, 705 
samples) and a GretagMacbeth ColorChecker Digital Chart (DC, 
228 from 240 samples) at 10 nm interval between 400 and 700 nm. 
Thus, the camera signal c  can be generated using Eq. (2). Finally, 
the signal c was corrupted by adding quantisation errors (256 grey 
levels), and a multiplicative Gaussian noise noiseerr  defined: 
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( )BGRerr T
noise 321   ,  ,][ ξξξε=  , with 01.0=ε  (12) 

where random variable iξ  has a normal distribution with 
expectation being zero and standard deviation being one. For the 
Munsell data set, 10% of them, one every 10 samples was selected 
as the training set, the whole set (including the training set) was 
used as the testing test. For the Textile set, one-third, one from 
every three samples was selected as the training set, and the whole 
set was used as the testing set. For the DC data set, one-half, 
selecting one every two samples, was used as the training set and 
the whole set was used for testing. 

 
Figure 1. Sensitivity Function of the Camera 

 
Figure 2. Sensors of the Camera  

The Real Camera Data 
The GretagMacbeth ColorChecker DC was also captured by a real 
camera. Thus, for the DC data set, its real colour signals ( c ) and 
reflectance functions ( r ) are both available. The data, the one-half 
defined above, was used as training and the whole set was used as 
testing. For the Wiener, and HF methods, the camera weight matrix 
Q  was estimated using the whole DC data (colour signals and 
reflectance functions), which is shown in Figure 3. Note that the 
linearization for the camera signals was applied while estimating 

the weight matrix Q , i.e., we found weight matrix Q, and f, g, h at 
the same time when minimizing: 
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over all the training data set plus some constraints. 

 
Figure 3. The Estimated Camera Weight 

The Measure of Performance  
The spectral reflectance error ( rerr ) and CIELAB colour 
difference ( E∆ ) were used for measuring the performance of each 
method. For the former it is defined by: 
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 (13) 

where, r is the original spectral reflectance function and r~ is the 
reconstructed spectral reflectance function.  

The tristimulus values computed from r and r~  were used for 
computing the colour difference using the CIE illuminant D65 and 
CIE 1964 standard colorimetric observer.  

Results and Discussions 
The results using the simulated and real camera data are listed in 
Tables 1-3 respectively. Two statistical values were computed. One 
is the median and the other is the maximum. Since both colour and 
spectra differences are not normally distributed, therefore, the 
median can reflect the overall performance better than the 
arithmetic mean. Tables 1 and 2 list the spectral and colour 
difference between the original and reconstructed colours 
respectively based on the simulated data sets. The values in bold 
are the smallest values among the three methods used. From Table 
1 it can be seen that for the Textile and DC data sets, the proposed 
method is the best in terms of median and maximum spectral 
differences. For the Munsell data set, the proposed method is still 
the best in terms of median spectral difference, while the HF 
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method is the best in terms of maximum spectral difference. As for 
the colorimetric accuracy, it can be seen from Table 2, that the 
proposed method is still the best in terms of median colour 
difference. However, the HF method is the best according to the 
maximum colour difference. 

The results using the real camera data set DC are listed in Table 3. 
It clearly showed that the proposed method outperformed the 
Wiener and HF methods in terms of all measurers by a large 
margin. The Wiener and HF methods perform roughly the same. An 
example is shown in Figure 4. The curve without marking is the 

original reflectance. The curves with marking “*”, “o”, and “+”are 
the reflectance functions generated by the proposed, Wiener, and 
HM methods respectively. It is clearly show the curve with marking 
“*” is closest to the curve without marking, and the curves with 
marking “o” and “+” similar in the left and middle parts, but are 
clearly difference in the right end. But in general they are similar. 

However, we have to note that the differences between the 
proposed method and either Wiener or HF method is much larger 
for the real camera data than those of the simulated data. This 
implies the followings. 

 

Table 1: Performance of each method based on the testing data sets in terms of median (Med) and maximum (Max) of spectra 
difference using the simulated data 

 Proposed Method Wiener Method HF Method 
 Med Max Med Max Med Max 
Munsell 0.015 0.116 0.020 0.136 0.031 0.089 
Textile 0.021 0.099 0.035 0.115 0.032 0.119 
DC 0.011 0.083 0.018 0.140 0.026 0.086 

 
Table 2: Performance of each method based on the testing data sets in terms of median (Med) and maximum (Max) of CIELAB 
colour difference using the simulated data 

 Proposed Method Wiener Method HF Method 
 Med Max Med Max Med Max 
Munsell 2.30 15.14 2.60 28.77 3.27 10.25 
Textile 2.38 12.01 3.46 33.78 2.80 11.39 
DC 1.72 10.96 2.61 10.97 2.77 7.65 

 
Table 3: Performance of each method based on the testing data set (DC) in terms of median (Med) and maximum (Max) of spectra 
difference and colour difference respectively using the real camera data 

 Proposed Method Wiener Method HF Method 
 Med Max Med Max Med Max 

rerr  0.011 0.120 0.051 0.161 0.052 0.165 
E∆  1.38 9.82 13.07 52.05 13.52 41.19 

 

 
Figure 4. A real (curve without marking) and generated reflectance functions 
by proposed (marked “*”) , Wiener (marked “o”), and HM (marked “+”) 
methods. 

When using the simulated data, the same amount of quantisation 
error and noise were introduced for testing all methods. In this 
case, the proposed method performed the best in terms of median 
measure for the spectra and colorimetric difference. On the 
contrary, the HF method is best in terms of maximum measure of 
colorimetric difference. However, all methods gave a much smaller 
difference in performances using the simulated data than that using 
the camera data.  

When testing different methods using the real camera data, the 
difference between the proposed method and the Wiener or the HF 
method is much larger, i.e. the proposed method is much better than 
the other methods. The proposed method used the training data set 
to characterise the camera and to obtain the mapping matrix W  at 
the same time. The spectral reflectance function can then be 
predicted using the matrix and training data set. The only source of 
error comes from the estimation of the mapping matrix W . While 
for the Wiener and HF methods, the camera’s weight matrix Q  
must be first estimated. This could introduce large errors. 
Additionally, it is known that the camera’s signal may not be 
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linearly correlated with the SPD of the illuminant, sensors and 
reflectance as expressed by Eq. (2). In order to have a fair linear 
relationship, gamma correction to the camera signals is needed. 
However, we did the gamma correction while estimating the matrix 
Q  at the same time. Comparing the results in Tables 1 and 2 for 
the DC data set, the estimating error for finding Q  is amplified 
when reconstructing reflectance using the Wiener and HF methods. 
This indicates that both methods are sensitive to the errors in 
estimating the matrix Q . This phenomenon can be easily 
understood, since both methods have no characterisation stage and 
they just based on equation (2) and the training data set. If Eq. (2) 
is heavily violated, the reconstructed reflectance function would 
largely deviate from the true reflectance function. 

Conclusions 
This paper describes a new method for generating spectral 
reflectance functions based on camera signals. Unlike the Wiener 
and HF methods, the new method does not need to know or to 
estimate the camera’s sensors. However, it requires a training data 
set including camera’s signals and their corresponding spectral 
reflectance functions. The method first characterizes the camera 
and estimates the matrix W  to map the camera’s signal to its 
reflectance function simultaneously. After the matrix W is found, 
the constrained least squares problem is then used for generating 
the reflectance, which is always within the desired spectral 
reflectance function range. Testing different methods using the real 
and simulated data, the comparison results showed that the 
proposed method outperformed both the Wiener and HF methods.  
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