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Abstract  
Adopting the dichromatic reflection model under the assumption of 
neutral interface reflection, the color of the illuminating light can 
be estimated by intersecting the planes that the color response of 
two or more different materials describe. From the color response 
of any given region, most approaches estimate a single plane on 
the assumption that only a single material is imaged. This 
assumption, however, is often violated in cluttered scenes. In this 
paper, rather than a single planar model, several coexisting 
planes are used to explain the observed color response. In 
estimating the illuminant, a set of candidate lights is assessed for 
goodness of fit given the assumed number of coexisting planes. 
The candidate light giving the minimum error fit is then chosen as 
representative of the scene illuminant. The performance of the 
proposed approach is explored on real images. 

Introduction  
A number of methods for color constancy have been proposed. Ma-
jor approaches have been classified either as statistics-or physics-
based techniques.4 In any case, the goal is to discount the color of 
the illuminating light in order to obtain an invariant description of 
the color of observed surfaces. In this paper, we will focus our 
attention on the problem of estimating the color of the light 
exploiting the principles of color image formation laid down by the 
dichromatic reflection model.12 An advantage of approaches 
exploiting the dichromatic model is that very few different surfaces 
are required in order to reach a conclusion about the color of the 
light. These approaches follow from the dichromatic hypothesis that 
the color response of an inhomogeneous dielectric material lies on a 
plane in RGB space,9 and that for a material with neutral interface 
reflection,8 this plane contains the color of the light. As a result, the 
color of the illuminant can be estimated by intersecting the planes 
that the color response of two or more different materials describe.  

There have been several previous approaches to utilizing dichro-
matic planes for illuminant estimation,3,7,10,11,13 However, an 
unresolved issue is how to estimate reliably the plane where the 
colors of each observed material rest. In estimating a plane, we 
must necessarily pool information from a region of the given image. 
The problem is that it is not known a priori what the extent of a 
material-coherent region is, and this makes it difficult to prevent 
incompatible information (i.e., the information provided by colors 
displayed by different materials) from being combined. In some 
approaches, it is assumed that the extent of each region in the scene 
is known13 or that in any given small region of the image only one 
material is imaged.3 Other approaches attempt to estimate the 
extent of these coherent regions prior to the calculation of the 
planes (or in some cases, lines in chromaticity space).7,10 Recently, 
a mechanism aimed at deciding when an estimated plane is likely to 
produce a reliable light estimate has been incorporated11 and leads 

to a noticeable improvement. In general, these methods rely on the 
assumption that there are sufficiently large connected regions of a 
single material in the scene. This assumption, however, may be 
violated in highly cluttered scenes as pointed out by Finlayson and 
Schaefer in Ref. [3].  

In this paper, we assume that in any patch of the given image, a 
fixed number of different materials do coexist. As such, in order to 
account for the multiplicity of materials, several planes (a number 
equal to that of assumed coexisting materials) are used to describe 
the observed colors, whatever the properties of the materials may 
be. In this description all planes intersect at the same line, which is 
defined by the color of the light. The color of the illuminant is then 
estimated by searching for the light that, under the assumed number 
of planar models, provides the best description for the colors 
displayed by the patch. The best description is obtained if there is 
an arrangement of the planes such that every color from the patch 
lies on at least one plane.  

A brief description of the dichromatic reflection model is given in 
the next section. Using this model, a general constraint on the 
observed colors under any given illuminant is formulated in the 
section entitled A Global Constraint. In the section on Solving for 
the Illuminant, it is shown how this constraint can be used to 
estimate the color of the light. A quantitative evaluation of the 
proposed method and some final remarks are given in the 
Experimental Results and the Concluding Remarks. 

Inhomogeneous Dielectric Materials  
Under the dichromatic reflection model.12 the color of an in-
homogeneous material is written as a linear combination of two 
independent colors: the colors of the diffuse and the specular 
reflections of the material. If the spectral properties of the light 
falling on the material remain unchanged across the scene, the 
colors displayed by the material can be written as  

,)()()( bbss cxmcxmxc +=  (1)  

where x  stands for pixel position, sc  and bc  are the colors of the 
specular and the diffuse reflections, and )(xms  and )(xmb  are 
scalar functions that capture the dependencies of the model on the 
geometry of the viewing situation. The color response )(xc  thus 
lies on a plane in RGB space (referred to as the dichromatic plane 
of the material) described by vectors sc  and bc . Moreover, if the 
specular reflection of the observed material is assumed to be 
neutral,8 the chromaticity of color sc  is the same as that of the 
illuminating light.  

When several different materials are observed, and provided that 
material changes are abrupt, the color vector bc  alone becomes a 
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piecewise constant function of position. Then instead of a single 
plane, the color response )(xc  will reside in a collection of planes 
all intersecting at the same line give by vector sc . The method 
proposed here rests on these assumptions. 

A Global Constraint  
Equation (1) indicates how the colors of an inhomogeneous dielec-
tric material distribute in color space. When several materials are 
observed, the color response lies on planes all intersecting at the 
same line defined by the color of the light. The light can therefore 
be viewed as the axis on which the planes pivot. Accordingly, any 
of the dichromatic planes can be written in terms of a single 
parameter (an angle) that describes the orientation of the plane. 
Indeed, a plane turning around sc  can be specified by its normal 
vector (which we denote as ),( scu γ ), orthogonal to sc , given as  

,]0)sin()[cos()(),( T
ss cRcu γγγ =  (2)  

where γ is the orientation-related parameter of the plane and R( sc ) 
is a rotation matrix that depends on the color of the light. Varying γ 
the vector on the right-hand side of Equation (2) defines a family of 
planes all turning on the b-axis. Rotation matrix R( sc ) changes the 
axis of rotation to that specified by vector sc , as shown in Figure 
1.  

The desired coordinate transformation rotation matrix, R( sc ), must 
bring the b-axis, represented by vector [001]T, in correspondence 
with the axis specified by the unit vector sĉ  = sc /| sc |. Such a 
transformation can be written as R( sĉ ) = ],ˆˆˆ[ 21 scbb , where 1b̂  and 

2b̂  are chosen as normal vectors orthogonal to one another and to 

sĉ . Clearly, the set }ˆˆˆ{ 21 scbb  forms an orthonormal basis of R3. A 
real square matrix whose columns are an orthonormal basis of its 
definition space is orthogonal. An orthogonal matrix defines a linear 
transformation which preserves the inner product and therefore is a 
rotation, a reflection or a combination of the two. In particular, for 
matrix R( sc ) to describe a proper rotation, the basis { 1b̂ , 2b̂ , sĉ } 
must be positively oriented. We note, however, that this last 
requirement is of no major consequence for our purposes and can 
therefore be relaxed. An improper rotation does not change the axis 
on which the dichromatic planes pivot, only their direction of spin. 
To actually produce R( sc ) we must procure 1b̂  and 2b̂ . There are 
several different ways in which these vectors can be obtained. For 
instance, we can arbitrarily fix two of the entries of 1b̂  and obtain 
the third from the orthogonality of this vector with sĉ . Vector 1b̂  
and 2b̂  can then be obtained as the cross product of 

ˆ

sĉ . 
Alternatively, matrix R( sc ) can be obtained as a composition of 
two elementary rotations (an elementary rotation being a rotation 
about one of the coordinate axes). If we write the color of the light 
as sc  = [r cos(θ) sin(φ) r sin(θ) sin(φ) r cos(φ)]T, the rotation 
matrix can then be written as R( sc ) = Rb(θ)Rg(φ), which explicitly 
shows the dependence of R( sc ) on the angles θ and φ of vector 

sc . Matrices Rb(θ) and Rg(φ) are rotations about the b-and g-axes 
in an anti-clockwise direction by angles θ and φ, respectively, when 
looking towards the origin:  

 
Figure 1. Dichromatic planes around color vector sc . The γ-dependent vector 
on the right-hand side of Equation (2) defines a plane tangential to the b-axis. 
cs)changes the tangential axis to that specified by vector Rotation matrix 
R( sc ). Two different planes, which correspond to two different values of γ, 
are shown in the figure. The actual value of parameter γ for a given plane 
depends on the specific derivation of matrix R( sc ), that derivation being 
carried out either using the properties of orthogonal matrices or the 
elementary rotations method.  

 

 (3)  

 (4) 

To derive the global constraint used here from the above restriction 
on the dichromatic planes, first suppose that the color response 

)(xc  of a single material is observed. Since all colors must fall on 
a plane, it is not difficult to see that there is an angle γ such that the 
following expression is satisfied:  

0),()( =si
T cuxc γ . (5) 

This is the constraint equation for a single material in the scene. If 
several materials are observed, there is a constraint of the same 
form as that of Equation (5) on the colors of each of the observed 
materials, which will generally be satisfied by a different γ. Placing 
all these constraints together, if n different materials are observed, 
the totality of observed colors must therefore satisfy  

,0),()(
1

=∏
=

si
T

n

i
cuxc γ  (6) 

for some γ1,...,γn. This is the constraint equation of the observed 
scene.  
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Solving for the Illuminant  
In principle, vector sc  is not known. It is the quantity we actually 
want to solve for. Nevertheless, Equation (6) gives an avenue to the 
estimation of this vector. Intuitively, we see that if the observed 
color response is well behaved—where good behavior is 
understood as having a color response spanning actual planes and 
not lying on degenerate entities such as points or lines passing 
through the origin—then there is a unique (discarding the 
amplitude) light-related vector such that Equation (6) is satisfied. 
The equation can be used as a constraint on the chromaticity of the 
light. In the least-square sense, the estimation of the illuminant’s 
chromaticity can be carried out as:  

 (7) 

with the additional constraint that sc  be a unit vector. This 
expression seeks the vector sc  that under the assumed number of 
planes, n, gives the best explanation to the observed colors. Note 
that in this expression the best explanation is taken as that 
configuration of planes that best fits the data, where goodness of fit 
is measured as the total deviation of the response values from the 
fitted planes (summed square of residuals).  

In practice, to solve for the color of the illuminant, we assume that 
there is a fixed set of candidate lights to choose from. Given this 
set, we evaluate how well each light “fits” the observed color 
response. The candidate light giving the minimum error fit is then 
chosen as the illuminating light. More precisely, suppose that there 
are κ candidate lights, 

1s
c ,..., 

κsc . For each sc  ∈ {
1s

c ,..., 
κsc }, 

the fit is assessed by measuring the total residual error 

 

resulting after all the different planar models have been fitted. The 
planes are fitted by using an iterative scheme in which the 
functional of Equation (7) is minimized with respect to a single γat 
the time. That is, the planes are fitted by iteratively minimizing over 
the angles γk, k = 1,...,n, the expression:  

 (8) 

where w( x ;k)is a weighting function that depends on previous γ’s 
estimates:  

( )2
}/{},...,1{

),()();( sk
T

kni
cuxckxw γ∏

∈
= . (9) 

For a γ with no previous estimate, the corresponding dot product in 
Equation (9) is taken equal to one. The minimization of Equation 
(8) is iterated for all γ’s until their change is small. Observe that the 
expression of Equation (8) is almost the same as that of Equation 
(7) with the difference being that in (8) the only free parameter is 
γk.  

We note that Equation (8) can be solved analytically. Substituting 
(2) into (8) and after some manipulation, it is not difficult to verify 
that the equation can be written as:  

 (10) 

where d1( x ) and d2( x ) depend on w( x ;k) and R( sc ). More 
precisely, if the rotation matrix is written as R( sc ) = ],[ 321 rrr  then 
di( x ) = );( kxw ),(xcrT

i i = 1, 2. Differentiating the summation 
term of Equation (10) with respect to γk, setting the result equal to 
zero, and solving for γk yields:  

 (11) 

Note that an additional check is needed in order to verify that the 
calculated γk corresponds to a minimum. If it is not, then the sought 
value is orthogonal to the found orientation.  

So far, nothing has been said about the choice of the number of 
planar models to use in estimating the light. It is easy to see that in 
ideal conditions (i.e., when the observed colors strictly lie on 
dichromatic planes), the constraint of Equation (6) still holds even 
if the number of models used exceeds the actual number of different 
materials in the image. We therefore can formulate the constraint 
using a reasonably large number of models without worrying about 
the actual diversity of materials in the scene.  

Experimental Results  
To test the performance of the proposed approach we used the 
database produced at the Computational Vision Lab, Simon Fraser 
University.2 This database contains images of 32 scenes taken 
under 11 different illuminants. The database is broken down into 
four subsets: mondrian, which is a group of images showing 
minimal specularities; specular, comprising images with non-
negligible specularities; metallic, containing images with metallic 
specularities; and fluorescent, where the imaged scenes contain at 
least one fluorescent surface. A detailed description of this database 
can be found in Ref. [2].  

In principle, the proposed scheme could be applied to the image as 
a whole. Here, we proceed differently. The image is first partitioned 
into blocks and the algorithm is applied to each of these blocks 
individually. For each block, the algorithm provides the fitting error 
of each candidate light (i.e., one of the 11 different illuminants used 
to construct the database). An overall assessment of how well the 
observed colors are described under a specific light is obtained by 
averaging the fitting errors across all image blocks under that 
specific illuminant. The candidate light that exhibits the best 
average fit is chosen as the estimate of the light. The reason for 
using such a procedure is that experimentally it provided better 
performance given a fixed number of planar models. This may be 
explained by the reduced complexity of the color response when 
our study is confined to a smaller subset of the total observations. 
In particular, the results reported here were obtained by partitioning 
the image into 200 × 200 non-overlapping blocks (each block 
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covering an area about a sixth of the total image), and using four 
planar models to describe the colors of each patch.  

Following the recommendation of Hordley and Finlayson5 on the 
evaluation of color constancy algorithms, in addition to the mean, 
Tables 1 and 2 show the performance of the approach using the 
sample median and the corresponding confidence intervals for two 
different measures. The median, in particular, has been advocated 
as being a more appropriate estimate of the central tendency of 
measured errors. In Table 1, the performance is shown in terms of 
the Euclidean distance between the estimated and the actual light in 
the rg-chromaticity space. In Table 2, the performance is measured 
in terms of the angular difference in degrees between the two lights.  

Table 1: Chromaticity error in rg-space. These results were 
obtained using four planar models to describe the colors in 
each 200 × 200 block. Confidence intervals (c. i.) were 
calculated using the routines produced by Kaplan.6  

mean 95% c. i. median 95% c. i. 

dataset 0.056 0.050-0.060 0.044 0.037-0.046 

mondrian 0.043 0.036-0.051 0.027 0.019-0.036 

specular 0.051 0.042-0.061 0.044 0.037-0.050 

metallic 0.076 0.067-0.087 0.062 0.046-0.085 
fluorescent 0.055 0.042-0.070 0.044 0.034-0.058 

 
Table 2: Angular error in degrees. In these tests, four planar 
models were used to explain the colors of each 200 × 200 
block. 

mean 95% c. i. median 95% c. i. 

Dataset 7.83 7.17-8.54 6.05 4.30-7.64 

mondrian 5.97 4.94-6.99 3.76 2.23-4.30 

specular 7.14 5.79-8.56 6.05 4.27-7.78 

metallic 10.99 9.57-12.47 8.14 7.90-11.69 
fluorescent 7.66 5.88-9.53 6.05 4.27-7.89 

 
We note that in previously proposed techniques based on the 
dichromatic reflection model experimentation has been carried out 
either on the mondrian subset or on a database specifically 
generated to test the proposed approach. In the mondrian subset, 
strong specularities are not prevalent but nevertheless the specular 
component is sufficient to cause noticeable dichromatic behavior. 
Furthermore, since imaged surfaces in this subset are mostly flat or 
convex, interreflections, which may locally change the color of the 
illuminating light, are almost absent. This may explain why it is 
more likely to obtain from this set a more accurate estimate of the 
light than from the rest of the database, as shown in Tables 1 and 2. 
Here, we obtained statistics on the performance for the whole 
database looking at establishing a comparison of the proposed 
approach with major statistics-based techniques.1 Clearly, the 
database contains images that violate the assumptions on color 
image formation upon which our model rests. Nevertheless, such an 
assessment may provide an idea of how the proposed method may 
perform when confronted with natural unconstrained scenes. The 
mean chromaticity error obtained for the whole database, shown in 
Table 1, compares well with those of statistics-based techniques, as 
reported in Ref. [1]. The confidence intervals in Tables 1 and 2 

describe how sure the measured statistics are within the given 
upper and lower bounds. These results are a positive evidence on 
the potential of our proposed technique for estimating the color of 
the illumination in uncontrolled scenes.  

Concluding Remarks  
In this paper we have introduced a multi-linear constraint on the 
colors displayed by different inhomogeneous dielectric materials 
under a given illuminating light. We showed that this constraint can 
be used to estimate the illuminant from the set of observed colors. 
This is achieved by searching for the light that under the assumed 
number of planar models provides the best fit to the observed color 
response, where the goodness of fit is measured as the sum of 
squares of residuals. The experimental results on the SFU dataset, 
which includes scenes that do not strictly comply with the 
dichromatic hypothesis on color formation, show good performance 
in estimating the color of the illuminant.  

References  
1. K. Barnard, L. Martin, A. Coath, and B. Funt. A comparison of 

computational color constancy algorithms – part II: Experiments with 
images. IEEE Transactions on Image Processing, 11, 9, pp. 985–996 
(2002).  

2. K. Barnard, L. Martin, B. Funt, and A. Coath. A data set for color 
research. Color Research and Applications, 27, 3, pp. 148– 152 
(2002). Available: 
http://www.cs.sfu.ca/∼colour/data/colourconstancytestimages/index. 
html.  

3. G. Finlayson and G. Schaefer. Convex and non-convex illuminant 
constraint for dichromatic color constancy. International Conference 
on Computer Vision and Pattern Recognition, vol. I, pp. 598–604 
(2001).  

4. G. Finlayson and G. Schaefer. Solving for colour constancy using a 
constrained dichromatic reflection model. International Journal of 
Computer Vision, 42, 3, pp. 127–144 (2001).  

5. S. Hordley and G. Finlayson. Re-evaluating colour constancy 
algorithms. International Conference on Pattern Recognition, vol. 1, 
pp. 76–79 (2004).  

6. D. Kaplan. Resampling Stats in Matlab. Available: http://www. 
macalester.edu/∼kaplan/resampling/.  

7. H.-C. Lee. Method for computing the scene-illuminant chromaticity 
from specular highlights. Journal of the Optical Society of America 
A, 3, 10, pp. 1694–1699 (1986).  

8. H.-C. Lee, E. J. Breneman, and C. P. Schulte. Modeling light 
reflection for computer color vision. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 12, 4, pp. 402–409 (1990).  

9. C.L. Novak and S. Shafer. Anatomy of a color histogram. Interna-
tional Conference on Computer Vision and Pattern Recognition, pp. 
599–605 (1992).  

10. V. Risson. Application de la Morphologie Math´ematique `a 
l’Analyse des Conditions d’Eclairage des Images Couleur. Ph.D. 
thesis, Ecole des Mines de Paris (2001). 

11. G. Schaefer. Robust dichromatic colour constancy. International 
Conference on Image Analysis and Recognition, vol. 2, pp. 257–264 
(2004).  

12. S. A. Shafer. Using color to separate reflection components. Tech. 
Rep. 136, Department of Computer Science, University of Rochester, 
New York (1984).  

13. S. Tominaga and B. A. Wandell. Standard surface-reflectance model 
and illuminant estimation. Journal of the Optical Society of America 
A, 6, 4, pp. 576–584 (1989). 

  

98 Society for Imaging Science and Technology & Society for Information Display




