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Abstract 
The performance of many color science and imaging algorithms 
are evaluated based on their mean errors. However, if these 
errors are not normally distributed, statistical evaluations based 
on the mean are not appropriate performance metrics. We present 
a non-parametric method, called the Wilcoxon signed-rank test, 
which can be used to evaluate performance without making any 
underlying assumption of the error distribution. When applying 
the metric to the performance of chromatic adaptation transforms 
on corresponding color data, we can derive a new CAT that 
statistically significantly outperforms CAT02 at the 95% 
confidence level. 

Introduction 
Chromatic Adaptation Transforms (CATs) are used in color science 
and color imaging to model illumination change. Specifically, they 
provide a means to map XYZ under a reference source to XYZ under 
a target light such that the corresponding XYZ produce the same 
perceived color.  

The color science and imaging community has mostly adopted the 
linear von Kries adaptation model to compute this illumination 
change.2,3,8,10 This model states that the color responses of 
corresponding colors under two illuminants are simple scalings 
apart.12 For example, if RGB and R'G'B' denote the color responses 
for an arbitrary surface viewed under two lights, then the von Kries 
model predicts that R'=aR, G'=bG, and B'=cB. In modern CATs, 
the scaling coefficients a, b, and c are the ratios of the color 
responses of the illuminants, i.e. a=R
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However, the CATs differ in the color space in which this scaling is 
applied.  

It is well known that the von Kries model operating in XYZ color 
space poorly describes corresponding color data (applying the 
scaling on XYZ tristimulus values is often referred to as the “wrong 
von Kries”). Thus, most modern CATs proposed in the literature 
are based on colorimetric color spaces,6 i.e. color spaces that are 
derived as a linear transformation of XYZ: 
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where M is a nonsingular (3x3) matrix linearly transforming XYZ 
values to RGB responses, M-1 its inverse and D the diagonal matrix 
containing the scaling coefficients.   

The color space in which the scaling takes place, i.e. the linear 
transformation from XYZ to RGB, is usually derived based on some 
error minimization. Li et al.8 iteratively optimized the coefficients 
of matrix M to produce minimum CIELAB color differences 
between predicted and observed results over a set of eight 
corresponding color data sets.9 A modified version called CAT02 
that excluded some of the successive haploscopic experimental data 
in the minimization was chosen for the CIECAM02 color 
appearance model.10 Fairchild2 used Munsell samples to calculate 
corresponding colors under illuminants A and D65 using the non-
linear Bradford CAT7 of CIECAM97s. He then developed a linear 
CAT by minimizing the CIELAB differences to the predictions of 
the Bradford CAT on this corresponding color data set. Finlayson 
and Süsstrunk3 used spectral sharpening that minimizes XYZ leat-
square errors to derive a linear CAT from Lam's corresponding 
color data set.7   

Several studies evaluated the different linear CATs mentioned 
above to find if one outperforms the other.1,8,10,11 In these studies, 
the performance criterion is based on the mean CIELAB prediction 
error. However, a single summary statistic does not always 
adequately summarize the underlying distribution. Having a lower 
mean does not necessarily imply that one algorithm is always better 
than the other.  

In section 2, we discuss the underlying assumptions made when 
using a performance metric based on a mean error and propose a 
more appropriate statistical evaluation, namely the Wilcoxon 
signed-rank test, for populations that are not normally distributed. 
In section 3, we derive a new linear CAT that outperforms CAT02 
at the 95% confidence level when tested on Lam's corresponding 
color data set. Section 4 concludes the article with a summary and 
some guidelines for evaluating color experiments. 

Color Error Analysis 
When evaluating chromatic adaptation transforms, we are 
interested in which transform best maps illumination change. A 
number of psychophysical experiments, collected by Luo and 
Rhodes,9 provide us with corresponding color data. Corresponding 
colors are pairs of tristimulus values, based on one physical 
stimulus, which appear to be the same color when viewed under 
two different illuminants. A “good” CAT's prediction of the 
tristimulus values of a corresponding color under a test illuminant, 
obtained by mapping the tristimulus values under the reference 
illuminant to the test illuminant, is thus (close to) identical with the 
actual corresponding color obtained by the psychophysical 
experiment. 
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Deviations from actual and predicted values can be expressed with 
some error measure. As we are interested in color appearance, a 
perceptual measure seems the most appropriate. ∆E, which is 
calculated as the Euclidian distance in CIELAB, is indeed such a 
metric. As CIELAB is not perfectly perceptually uniform, ∆E94, 
∆ECMC, ∆E2000 were later derived that add different weights 
depending on hue, saturation, and/or lightness of the color samples 
to be evaluated.  

These error measures can tell us how accurately a particular CAT 
maps a color to a different illuminant, and they allow us to easily 
compare the relative performance of different CATs on a single 
corresponding color pair. However, we are generally more 
interested in the performance over a large set of corresponding 
colors, as a CAT should predict many corresponding colors under 
many different illuminants. Often, a single summary statistic is 
chosen, such as the mean (or root mean square) ∆E, averaged over 
the data sets. If the mean error for one CAT is found to be lower 
than the mean error for the other CAT, then the conclusion is drawn 
that the first CAT is better than the second. 

There are two potential problems with using the mean as a single 
summary statistic. First, the mean value is not an appropriate 
statistic when the errors are not normally distributed.13 Figure 1 
shows the histogram of CAT0210 prediction errors (∆E94) on Lam's 
corresponding color data.7 Figure 2 plots the quantiles of this error 
distribution against quantiles of a standard normal distribution. It is 
clear from the histogram (Figure 1) that the errors are not normally 
distributed. If they were, then the plot of the quantiles would follow 
a straight line (Figure 2).  

 

 
Figure 1. The distribution of CAT02 prediction errors (∆E94) on Lam's 
corresponding color data. 

If the error distribution is not normal, the error median is a better 
measure to reflect the central tendency of the samples, as it is not 
influenced by extreme values.13 

Second, the fact that one CAT has a lower mean (or median) value 
than another is not sufficient information for drawing the conclusion 
that one CAT outperforms the other. An alternative is to use the 
whole error distribution. We can use the mean performance of the 
CATs to formulate a hypothesis and then test this hypothesis, as 
was done by Finlayson and Süsstrunk,4 who employed a student t-
test and found an infinite number of CATs that perform equally 
well for a given confidence interval. However, if the error 
distribution is not normal, we need to use a nonparametric (or 
distribution-free) method to test the hypothesis that a better median 
predicts a better CAT performance. A non-parametric alternative to 
the student t-test is the Wilcoxon signed-rank test, which makes no 
assumptions about the nature of the underlying error distributions, 
but takes into account the sign and rank of the error difference.  

 
Figure 2. Quantiles of the error distribution plotted against the quantiles of a 
standard normal distribution. 

Suppose we want to compare the performance of two CATs. We 
use each CAT to predict the corresponding colors under the test 
illuminant of a given data set. We calculate the error, using one of 
the error measures described above, between the actual and 
predicted corresponding colors. Let A and B be random variables 
representing the prediction error, and µ

A
 and µ

B
 their respective 

median. The Wilcoxon signed-rank test can be used to test the 
hypothesis that µ

A
=µ

B
, i.e. we hypothesize that both CATs have the 

same performance. We call this the null hypothesis H
0
. To test this 

hypothesis, we consider the difference of the independent error 
pairs (A

1
-B

1
)...(A

N
-B

N
) for N different corresponding color pairs. We 

rank the error pairs according to their absolute differences, and then 
assign a plus (+) or minus (-) sign to the ranks depending if A

i
>B

i
 or 

A
i
<B

i
. If H

0 
is correct, then the sum of the ranks W will approximate 

zero. If W is much larger (or much smaller) than zero, the 
alternative hypothesis H

1
, namely that µ

A
>µ

B
 or µ

A
<µ

B
 is true. We 

can test the null hypothesis H
0 
against the alternative hypothesis H

1 

at a given significance level α. We reject the null hypothesis and 
accept the alternate hypothesis if the probability of observing the 
error differences we obtained is less than or equal to α. For 
example, if α =0.05 and the probability p we calculate is 0.04, then 
we can reject H

0 
at the 0.05 significance level. That amounts to 

rejecting the null hypothesis 95% of the time. 
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CAT Experiment 
We used a spherical sampling technique4 to evaluate if we can find 
a chromatic adaptation transform that outperforms CAT02, using 
the Wilcoxon signed-rank test as performance metric. In the case of 
trichromatic (RGB and XYZ) imaging applications, the basis 
functions span a three-dimensional space. If the lengths of the 
vectors are normalized to unity, then different vector combinations 
can be illustrated with their end-points that lie on the surface of a 
sphere. Trying all possible combinations of three points distributed 
over the surface of the sphere allows us to find all possible 
solutions to a given problem. The advantage over other 
optimization techniques is that spherical sampling assures a global 
minimum is found, and that not only one, but a set of solutions can 
be retained if so desired.  

We used Lam's corresponding data set and an error measure of 
∆E94. While it is obvious that the choice of error measure could 
influence the results, two studies have found that for the 
corresponding color data sets considered, which ∆E error measure 
was chosen did not change the overall trends.8,11  

Table 1 summarizes the mean values and the p-values found using 
the Wilcoxon signed-rank test as performance metric. The 
prediction errors of the best CAT found through spherical sampling 
was compared to CAT0210 and the Sharp CAT.3 As can be seen 
from the results, the best CAT (W-CAT) outperforms CAT02 at the 
95% confidence level (p<0.05). However, the difference in median 
between W-CAT and the Sharp CAT are not statistically 
significant. Figure 3 shows the corresponding RGB color matching 
functions. 

Table 1: Median ∆E94 values for Lam's data set, and probability 
p-values resulting from the Wilcoxon signed-rank test. 

CAT Median ∆E94 p-value 
W-CAT  
CAT02 
Sharp 

2.61 
2.67 
2.69 

 
0.04 
0.60 

 

 
Figure 3. The RGB color matching functions of W-CAT (solid line), Sharp CAT 
(--), and CAT02 (-.-). 

Conclusions 
Many color algorithms are evaluated using the mean error as a 
statistically relevant performance metric. However, the underlying 
assumption that the error distribution is normal was shown to not 
always be true.5 Thus, we believe that using the median as a 
singular quality indicator, and the Wilcoxon signed-rank test as a 
performance metric that also takes into account the underlying error 
distribution, is more applicable to many performance evaluations in 
color science and color imaging. Thus, the distribution of errors 
should first be analyzed before the statistical evaluation method is 
chosen. 

We analyzed the error distribution of the predicted corresponding 
colors using CAT02, the chromatic adaptation transform chosen for 
CIECAM02, applied to Lam's corresponding color data set. We 
found that the errors do not follow a standard normal distribution. 
Using the Wilcoxon signed-rank test as performance metric and a 
spherical sampling technique, we derived a chromatic adaptation 
transform W-CAT that outperforms CAT02 at the 95% confidence 
level. 

We are not claiming here that W-CAT outperforms CAT02 in all 
instances; this still needs to be evaluated. However, it is interesting 
to note that a performance metric more suited to the error 
distributions challenges the assumption that all modern CATs 
perform equally well.  

When comparing W-CAT to Sharp CAT, we cannot find a 
statistically significant difference in performance between the two. 
Looking at the corresponding color matching functions in Figure 3, 
we notice that W-CAT is “sharper” in the red, i.e. more 
narrowband than CAT02. While not quite as sharp as the Sharp 
CAT, the peaks in the red are approximately at the same 
wavelength, while CAT02's peak is at shorter wavelength. Recall 
that the Sharp CAT is derived through XYZ error minimization of 
Lam's corresponding colors3 and not through optimization of a 
perceptual ∆E error. This leads to the conclusion that at first 
approximation, sharpening is well suited to derive transforms that 
can predict corresponding colors. 
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