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Abstract 
Color is an important parameter in pathological diagnosis and it 
is the very reason why tissue samples are stained, since the 
morphological structure of the tissue components can only be 
vividly observed when they are colored differently. Common for 
routine staining is the Hematoxylin and Eosin(HE) dyes, however 
to assess diseases related to the condition of the fibrosis, Masson-
trichrome (MT) dyes are used instead. The digital transformation 
of an HE-stained image to its MT-stained (digital staining) 
equivalent has already been proposed, where the information 
derived from the 16-band images of the stained specimens were 
utilized. In this paper we addressed the possible reduction of the 
spectral dimension requirement to implement the proposed digital 
staining procedure. To find for the effective spectral dimension, 
from the classification point of view, principal component analysis 
(PCA) was applied independently to the five statistical descriptors 
of the tissue components transmittance spectra, i.e. mean, 
maximum, minimum, range and standard deviation. In our 
initial experiments with liver tissue specimens, it was found that 
ten principal components can be effective to implement the digital 
staining scheme.  

Introduction  
Dyes are applied to pathological tissue specimens such that 
pathologists can perform a diagnosis about the particularities of the 
patient’s disease. Once tissue specimens are stained, the different 
pathological structures composing the tissue can be readily 
examined. Depending on the pathologist initial findings about the 
patient’s ailment, specific tissue structures are examined to yield a 
conclusive diagnosis. For diseases related to the condition of the 
fibrosis, Masson-trichrome dyes are used. These dyes have an 
effect of transforming the fiber region into blue, the cytoplasm to 
shades of red and the nucleus to black. 

Tissue specimens are observed under a microscope to examine any 
changes in their morphological structures. With the recent 
development in filter technology it is now possible to acquire 
microscopic images at N different wavelengths, N>3, where the 
resulting image is referred as multispectral image.1 A multispectral 
image carries more information compared to grey-level or RGB 
images, and reports regarding the capability of a multispectral 
microscopic imaging system to enhance medical image analysis, 

and to deal with problems such as dye amount standardization, and 
digital staining of pathological tissue specimens can be found in 
literatures.2-8 

Digital staining is the transformation of an image into an image of 
desired color. A digital staining methodology for pathological tissue 
specimens, i.e. the transformation of an HE-stained specimen to its 
MT-stained equivalent, has already been proposed.7-8 The method 
utilizes the information from the 16-band multispectral images of a 
tissue specimen. In this paper, we incorporate feature extraction 
scheme, i.e. PCA, in the implementation of the digital staining 
procedure proposed in Ref. [8] to reduce the transmittance feature 
dimension. The general framework of the current digital staining 
methodology is shown in Fig.1. First, tissue components, which are 
emphasized in the MT-stained tissue slide, are identified from the 
HE-stained tissue slide, and then classifiers for each of the 
components’ transmittance spectra feature calculated over a 5 × 5 
block pixels: mean, maximum, minimum, range and standard 
deviation, are built. Classification is undertaken on the PCA-
extracted features to select the appropriate 16 × 16 transformation 
matrices, which are devised from the linear mapping of specific sets 
of spectral transmittance. These matrices convert the transmittance 
spectra of the classified HE-stained pixels to their MT-stained 
configurations. The transformed transmittance spectra are finally 
converted to their corresponding RGB values to provide a 
perceptible digitally-stained image. Generally, the digital staining 
procedure can be done in three steps: (i) classification of the 
various tissue components; (ii) transformation 16-band 
transmittance spectra of the classified multispectral pixels to their 
desired transmittance configuration; and (iii) the visualization of the 
16-band digitally stained image in the RGB color space. 

 Incorporating digital processing techniques to pathological 
diagnosis, such as in the area of staining of tissue slides, would 
facilitate faster implementation of the diagnosis, and would also 
provide convenient way for information exchange across the 
internet, especially that in today’s era of information technology, 
the very ultimate goal is to provide and access information 
regardless of regional location. 
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Figure 1. General framework of the digital staining procedure. 

Image Acquisition 
The microscopic multispectral camera developed by Akasaka 
Natural Vision Research Center, Japan9 was used to capture the HE 
and MT-stained images of a liver tissue specimen. Since the HE 
and MT-stained specimens were extracted from the serial sections 
of the tissue, the general histological structure of the specimens are 
similar. Information regarding the tissue specimen within the visible 
spectrum range, i.e. 400 nm to 700 nm can be obtained from the 
captured 16-band multispectral images of size 2000 × 2000 pixels. 

For the current experiment, the subjects are the liver tissue slides 
prepared by the National Cancer Center (NCC) of Japan. 
Specifically, we have one pair of HE and MT-stained slides, and 
from which we captured six pairs of HE and MT-stained images. 
From these images the following tissue components were identified: 
Nucleus, Cytoplasm, red blood cell (RBC), white region, fibrosis; 
and components which are associated to the type of protein 
abundant in them: Serum and Cytoplasm with Serum. The 
magnified images of these components are shown in Fig. 2. Figure 
3, on the other hand, illustrates the components average 
transmittance over a 5 × 5 block 

Feature Parameters 
The spectral transmittance or reflectance configuration of a tissue 
component reflects, to certain extent, the component’s structural 
and biochemical composition,10,11 That is, different tissue structures 
exhibit variability in their transmittance spectra configurations. 
Owing to this fact, various applications have been implemented 
utilizing the information contained in the transmittance spectra of 
the various tissue components.5,6,10,12 Equation (1) is the expression 
used to estimate the transmittance of a single pixel, where ( )λ,, yxt  
refers to the spectral transmittance of the selected component at 
location yx, ; ( )λ,yx,oI  is the intensity signal of the object 
image; refI  is the reference signal; ( )λ,, yxIdo  and ( )λ,, yxIdref  
refer respectively to the dark current signals of the reference image 
and the object image. The reference image is acquired by imaging a 
slide with no tissue sample on it, while the dark current image is 
obtained with no illumination of the CCD camera. 
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Figure 2. RGB images of the different tissue components. Top: HE stained; 
Bottom : MT stained. W–white region; Fib- fibrosis; C- cytoplasm; N-Nucleus; 
S-serum; C+S –cytoplasm with serum; RBC–red blood cell: Fib-fibrosis 
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Figure 3. Transmittance-spectra of the different tissue components. (a) HE 
stained; (b) MT-stained  
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Neighboring pixels are said to be correlated. Consideration of the 
contextual information of an image pixel may therefore enhance the 
classifier performance as shown in Ref. [3]. The simplest way to 
exploit the spatial context of an image pixel is to consider its 
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statistical behavior within a defined window. If we let 
kλxyS  

represents the set of coordinates in a rectangular sub-image window 
of size uxv at wavelength kλ  and centered at point (x,y), we have 
the following statistical descriptors, which are considered in this 
work. 
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PCA-Based Feature Classification 
Before classification, feature extraction is done to reduce the 
dimension of the feature space and the correlation among the 
feature variables. The benefits of doing so are twofold: it trims 
down the time for classification, and lessens the design complexity 
for the classifier. A common feature extraction method is the 
Principal Component Analysis (PCA). In this method the data are 
linearly projected onto orthogonal axes, thereby producing new sets 
of uncorrelated variables. 

The transmittance-feature data set can be represented by a matrix 
Ω  of size mxn ; the m rows correspond to the number of 
measurements for the p classes of tissue components, and the n 
columns to the number of variables, i.e. n=16 bands. The n  
principal components (n orthogonal axes) are based on the 
eigenvectors computed from the covariance matrix of the original 
data set. To reduce the dimensionality of the input feature space to 

nr < , the eigenvectors are ordered based on the magnitude of 
their associated eigen values, and only those eigenvectors whose 
eigen values are the largest are chosen. The projected 
measurements of a transmittance feature vector α can be expressed 
in the following form11 

αAy T=  (7) 

where A  is a projection matrix having a dimension of nxr .On the 
assumption that the projected data has a gaussian distribution, the 
following condition can be applied to label an input vector iα : 

iα iω∈ if ( ) ( ) >iiri ωω pp y ( ) ( )jjri ωω pp y  for all ji ≠ ,  (8) 

And for a quadratic classifier, the discriminant function is of the 
following form: 

( ) ( )( ) ( ) ∑∑ −
⎟
⎠
⎞⎜

⎝
⎛ −−−−= 1

2
1

log
2
1ωlog

ir rri

T

rirriii i
Pg µyµyα i

     (9) 

( )iP ω  refers to the a priori probability for class iω , while irµ and 

∑ir
is the mean and covariance of the projected transmittance 

feature, for a particular transmittance class, iω .  

[ ]riir yEµ =    (10)  

( )[ ]∑ −=ir irri
2µyE   (11) 

A pixel is associated to class iω  when the condition 
( ) ( )αα ji gg >  for all ji ≠ Ref. [13] is satisfied 

Digital Colorization 
To reflect the MT-stained color of the classified HE-stained pixel, 
the 16-band spectral-transmittance configuration of such pixel is 
first converted to its MT-stained configuration. The transformation 
process is done through a 16 × 16 transformation matrix, which 
was obtained through a linear mapping process between sets of HE 
and MT-stained transmittance spectra. The visualization of the 
digitally-stained image is realized by projecting the transformed 16-
band spectral transmittance onto the RGB color space. 

Linear Mapping of Spectral Transmittance 
To obtain a transformation matrix that would convert the 
transmittance of a classified pixel to its desired transmittance 
configuration, linear mapping of spectral transmittance data sets 
was introduced in Ref. [7]. The procedure was implemented on the 
basic assumption that a linear relationship exists between sets of 
transmittance spectra of tissue components stained with different 
dyes. Putting the linear assumption in equation form, we have: 

w
HEMT

TT =   (12) 

where MTT  and HET  are ( )pxqNxN =16 matrices consisting of 
the transmittance samples of MT-stained components and HE-
stained components, respectively; q indicates the number of  
transmittance spectra samples per tissue component; p denotes the 
number of transmittance classes, i.e. number of tissue components, 
included in the transformation, e.g. nucleus, cytoplasm etc. The 
parameter w  represents the 16 × 16 transformation matrix whose 
optimal solution,

∧
w , is calculated as follows: 

MTHE
w TT +=
∧

 (13) 

where +
HE

T  refers to the pseudo-inverse of matrix 
HE

T .14 For a 
given HE-stained transmittance ( )λ

HE
t , the corresponding estimate 

of its MT-stained transmittance is given by: 

+= wHEMT tt  (14) 
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Weight Factor Calculation 
The transformation matrices are associated with weight factors. 
Supposing we have M transformation matrices derived from the 
linear mapping of specific sets of transmittance spectra, and each is 
assigned to transform a group of transmittance spectra, then we are 
going to have M weight factors to be calculated. In the current 
experiment, these factors are calculated from the outputs of the C 
classifiers, which were implemented for the C different 
transmittance feature vectors. The decision of the cth classifier can 
be expressed in the following form: 

( ) ic ωe =α  (15) 

where α  is the input feature vector, and iω , { }Ci ,....1,2∈∀  is the 
class favored for by the classifier. To calculate for the weight 
factors, the C classes of transmittance spectra are assigned to the M 
different transformation matrices:8 

∑
=

=∆
M

m
T

T
T

m

m

m

V

V

1

  (16) 

TmV  refers to the accumulated votes cast for class iω  that is 
assigned to transformation matrix mT . As an example, a 
transformation matrix mT  assigned to transform tn  classes of 
transmittance spectra would have a possible accumulated votes of 

tn , i.e. tTm nV =  ,as a vote is assigned a binary value of 1 when the 
pre-assigned transmittance class is favored for by one of the 
classifiers, otherwise it is 0. With the weight factors calculated 
from Eq. 16, the transformed transmittance at kth  band, is given 
by the subsequent equation: 

( ) ( )∑∑
= =

⎟
⎠
⎞

⎜
⎝
⎛∆=

M

m j

m
jHEk kjT wλtλt

mMT
1

16

1 ,
*    (17) 

where m
kjw ,  represents an entry at kj,  in the thm  transformation 

matrix. Note that the notation used for the transmittance spectra in 
Eq. 17 disregards the spatial location of the pixel, since the 
emphasis at this point is on the transformation of the spectral 
transmittance. 

RGB Visualization 
Classification coupled with linear mapping of spectral transmittance 
results to a 16-band virtual MT-stained image. In order for us to 
visualize this image, the estimated MT-stained transmittance, MTt , 
of the classified HE-stained pixel is converted to its corresponding 
RGB values: 
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where X,Y,Z correspond to the CIE 1931/1964 chromacity 
coordinates: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) λλλλ

λλλλ
λλλλ

dtEzZ

dtEyY

dtExX

MT

MT

MT

∫
∫
∫

=
=
=

 (19) 

The parameters ( ) ( ) ( )λλλ zyx ,,  correspond to the CIE XYZ color 
matching functions and ( )λE  to the illumination spectrum. 
Furthermore, iii ZYX ,, , BGRi ,,= , are the XYZ chromaticity 
coordinates of the RGB primary colors, and blackblackblack ZYX ,,  are 
the XYZ chromaticity coordinates of the monitor background. 

Experiment Results 
Table 1 shows the number of training samples for the different 
tissue components.  

Classification with PCA Features 
In section 3 we have identified five differing transmittance features, 
and in order for us to determine the appropriate number of principal 
components, which capture most of the variance of these features, 
we have to look into the eigen value energy, which can be derived 
from the covariance matrix of the input transmittance feature data 
set. Given the eigen values niλi ...2,1= , to find for the first k 
principal components that account for most of the input data 
variance, k is set such that Th, satisfies a pre-defined threshold 
requirement: 

∑

∑

=

==
m

i
i

k

i
i

λ

λ
Th

1

1

 

 (20) 

We applied PCA independently to the different feature sets, and the 
resulting cumulative variances are shown in Fig. 4. The plots 
demonstrate that two principal components are enough, for a 
threshold of 90%, for the three feature sets: mean, minimum and 
maximum, while we need at least three components for the range 
and standard deviation feature sets.     

 
Table 1: Number of Training Samples for Each Tissue Component 

 

Tissue components 
( iω ) 

Nu 
( 1ω ) 

Cyto 
( 2ω ) 

RBC 
( 3ω ) 

White 
( 4ω ) 

Fiber 
( 5ω ) 

Serum 
( 6ω ) 

C+S 
( 7ω ) 

# of samples 450 450 300 450 450 300 150 
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Figure 4. Plot of the PCA cumulative variance. 
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Figure 5. Integrated average error, for the different feature vectors, with 
respect to number of PCs. 

However, since the covariance matrix, from which the PCA vectors 
were derived, was generated without giving emphasis on class 
details, an accumulated variance of, say, 90%, may not necessarily 
give an optimum classification result. To determine the optimum 
number of PC, for the purpose of classification, we randomly 
divided the data samples shown in table 1, into training and data 
sets. We performed the classification procedure ten times, with 
different sets of training and testing data for each time. The 
integrated average error rate, for the different feature vectors, with 
respect to the number of components is shown in Fig. 5; the 
average error dips at a point corresponding to ten PCs and does not 
significantly change after this point. The classification results with 
ten PCs for a particular area in an HE-stained specimen is shown in 
Fig. 6. Apparently, there are areas in the image that the classifiers 
don’t have a common agreement about the class of the pixels found 
in the area. The corresponding HE-stained and MT-stained of the 
color-coded images in Fig. 6 is shown in Fig. 7 

Colorization 
Once the HE-stained multispectral pixels are classified, the next 
step is to impart the right MT-stained color impression on them, 
and this can be done by transforming their transmittance spectra to 
their corresponding MT-stained configuration.  

The simplest way to implement the digital transformation of an 
unstained or stained specimen to its desired stained image 
impression is to perform a linear mapping of the available 
transmittance data sets at once. However, this notion would not 
work, especially when the transmittance clusters of the different 
tissue components, in linear space, are not compactly defined. It is 

in Ref. [7] that the idea of providing several transformation 
matrices, instead of having a single transformation matrix only, was 
introduced. In this paper, we also utilized several transformation 
matrices to effect the digital transformation of an HE-stained image 
to its MT-stained equivalent 

(a) 

Nucleus 

Cytoplasm RBC 

White Fiber 

Serum

C+S 

Legend: 

(b) 

(d) 
(c) 

(e)  
Figure 6. Classification results of the different feature vectors: (a) Mean; (b) 
Maximum; (c) Minimum; (d) Range; (e) Std. dev. 

(a) (b)  
Figure 7. Corresponding HE and MT-stained of the classified area in Fig. 6: 
(a) HE-stained; (b) MT-stained 

In Ref. [8], the authors utilized three transformation matrices that 
initially satisfy the digital staining objective. Namely, Matrix 1 
( 1T ), which was generated using the transmittances of cytoplasm, 
red blood cell (RBC)and the white region; Matrix 2 ( 2T ), which 
was produced with the transmittance spectra of Nucleus, 
Cytoplasm, Fibrosis and the white region; and Matrix 3 ( 3T ), 
which was derived using the same transmittance combination as 
with Matrix 2, but with the addition of the Serum transmittance 
spectra. Transmittance spectra of HE-stained pixels classified as 
nucleus, cytoplasm or RBC were transformed to their MT-stained 
configurations using 1T . On the other hand, 2T  was used to 
transform the HE-stained transmittance spectra of the white region 
and the fibrosis, while 3T  was assigned to transform the 
transmittance of the region associated to the presence of Serum. 
Lastly, the transmittance of the C+S component was assigned to the 
three transformation matrices. These matrices as well as the 
weighting factor calculations implemented in Ref. [8] were adopted 
in the current work 
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Figure 8 displays the resulting digitally–stained images. It can be 
observed that digitally-stained images acquire the same general 
impression as their real counterparts. At a closer look on the 
components that make up these images however, we can find that 
there are still areas which are not replicated at their best. The 
misrepresentations of these components in the virtual MT-stained 
images are due to the limitations of the classifier design and the 
design of the transformation matrices. 

 

 
Figure 8. Right: Liver specimens which are actually stained with Hematoxylin 
and Eosin (HE); Middle: Result of the digital staining procedure; Left: the 
specimen when actually stained with Masson Trichrome (MT) The contrast of 
the digitally stained images was adjusted using Photoshop. 

Conclusion 
The initial implementation of digital staining in the context of 
pathological images has already been introduced, and in this paper 
we have addressed the effective spectral dimension which would 
yield results (digitally-stained images) comparable to the images 
which were produced utilizing the original spectral dimension. It 
has been shown that a spectral dimension of ten is effective to 
produce fair results; these results prove the significance of 
multispectral imaging to pathological diagnosis. The effectivity of 
this dimension, however, has to be evaluated further with other 
samples of liver specimens and ideally with other specimens of 
different tissue type. 

Indeed, the introduction of digital staining technique to the medical 
arena is of great practical value, especially for tele-pathology where 
exchange of medical information is done through the internet. 
However, before this technique can be fully utilized for practical 
purposes, it should be: (i) robust to varying staining intensity of the 
specimens; (ii) able to capture the differing characteristics of the 
tissue structures comprising the specimens; in addition (iii) the 
automation of the procedure should also be dealt with. We would 
look into these issues in our future work. 
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