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Abstract 
Spectral imaging has been widely developed over the last ten 
years for archiving cultural heritage. It can retrieve spectral 
reflectance of each scene pixel and provide the possibility to 
render images for any viewing condition. A new spectral 
reconstruction method, the matrix R method, can achieve high 
spectral and colorimetric accuracies simultaneously for a specific 
viewing condition. Although the matrix R method is very effective, 
the reconstructed reflectance spectrum is not smooth when 
compared with in situ spectrophotometry. The goal of this 
research was to smooth the spectrum and make it more accurate. 
One possible solution is to identify pigments and find their 
compositions for each pixel. After that, the reflectance spectrum 
can be modified based on two-constant Kubelka-Munk theory 
using the absorption and scattering coefficients of these pigments, 
weighted by their concentrations. The concentrations were 
optimized to best fit the spectral reflectance predicted by the 
matrix R method. As a preliminary experiment, it was assumed 
that a custom target was painted using several known pigments. 
The simulation results show that incorporating pigment mapping 
into the matrix R method can recover the smoothness of the 
reflectance spectrum, and further improve spectral accuracy of 
spectral imaging. 

Introduction 
Traditional colorimetric devices acquire only three samples, 
critically under-sampling spectral information and suffering from 
metamerism. Alternatively, spectral devices increase the number of 
samples and can reconstruct spectral information for each scene 
pixel. Retrieved spectral information can be used to render color 
images for any viewing condition. Spectral imaging has been 
widely developed over the last ten years for archiving culture 
heritage at a number of institutes worldwide. Three spectral 
acquisition systems have been developed and tested in our 
laboratory.1 

Recently, the matrix R method was proposed and implemented for 
spectral imaging reconstruction.2-3 The method followed the 
Wyszecki hypothesis4-6 where a spectrum can be decomposed into 
a fundamental stimulus and a metameric black. The spectral 
reflectance and tristimulus values were both calculated from multi-
channel camera signals. Then the hybrid spectral reflectance was 
generated by combing the fundamental stimulus and metameric 
black predicted from tristimulus values and spectral reflectance, 
respectively. This method achieved high spectral and colorimetric 
accuracies simultaneously for a certain viewing condition. The 
spectral accuracy of this method was mainly determined by the 
estimated spectral reflectance, which was calculated by multiplying 
the multi-channel camera signals with a transformation matrix. Each 

column of the transformation matrix can be estimated by a basis 
vector, and spectral reflectance can be represented as a linear 
combination of these basis vectors, weighted by the multi-channel 
camera signals. A transformation matrix for a six-channel virtual 
camera is shown in Figure 1. Due to the wavelike shape of the basis 
vectors, the predicted spectral reflectance for a white patch, for 
examples, is not as flat as in situ spectrophotometry, shown in 
Figure 2. The goal of this research was to smooth reflectance 
spectra and to further improve spectral accuracy. 
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Figure 1. The transformation matrix from six-channel camera signals to 

spectral reflectance factor. 
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Figure 2. Measured (solid) and predicted (dashed) spectral reflectance factors 

for a white object. 
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Praefcke proposed a method to smooth basis vectors by taking the 
roughness of basis vectors into account in the optimization.7 In his 
method, these basis vectors were actually eigenvectors of a 
reflectance database, and the first eigenvector explains the most 
variability of the database, and the second eigenvector explains the 
second most variability of the database, and so on. The cragged 
shapes of the forth and fifth eigenvectors are related to both the 
least variability of the database and the noise associated with the 
database. The transformation matrix used in the matrix R method, 
however, is quite different from the eigenvectors in the Praefcke’s 
method. The column vectors of the transformation matrix are 
almost equally significant and cannot be smoothed using the 
Praefcke’s method. 

Another approach is to analyze the composition of each pixel, and 
incorporate the pigment information into the prediction of spectral 
reflectance. Pigment identification usually requires more 
information than just visible spectral reflectance.8-10As a pilot 
experiment, it was assumed that the pigments composed of a paint 
target were known. This research bypassed pigment identification 
and directly performed pigment mapping using the known pigment 
database. In 1931, Kubelka and Munk11 proposed a turbid media 
theory that derived the nonlinear relationship between colorant 
concentration and spectral reflectance for a translucent colorant 
layer. Allen12 applied the Kubelka-Munk theory for colorant 
formulation and developed a series of numerical methods. For this 
research, the painting was assumed to be opaque. Two-constant 
Kubelka-Munk theory was used to describe the nonlinear 
relationship between spectral reflectance and colorant 
concentration. The colorant concentrations were optimized to best 
fit the spectral reflectance predicted by the matrix R method. Next 
spectral reflectance was reconstructed from the colorant 
concentrations and the pigment database. Finally, the smoothed 
reflectance was used to calculate the metameric black that was 
combined with the fundamental stimulus. The preliminary results 
show that incorporating pigment mapping into the matrix R method 
can smooth reflectance spectra and further improve spectral 
accuracy. 

Theory 
Pigment Mapping 
The general mathematical model of Kubelka-Munk theory for 
translucent samples is rather complicated, but two simplified 
models could be derived from the general model for the cases of 
transparent and opaque film with opaque support. Since the paint 
sample used in this research was largely opaque, the relevant 
equations are: 
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where Rλ,mix  is the spectral reflectance of a pigment mixture and 
K S( )λ,mix  is the ratio of spectral absorption (K ) and scattering (S) 

of the mixture, which can be further expressed using the amount of 

pigments (c), the number of pigments ( n ), the absorption (k) and 
scattering ( s) of pigments at unit amount. 
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The first and most important step is to develop the colorant 
database, which includes the unit absorption and scattering for each 
pigment. The tint ladder of each pigment is a certain number of 
mixtures of the pigment with white paint. If there are two samples 
in the tint ladder, in which case n  is equal to 2 in Eq. (3), the 
absorption and scattering of the pigment at unit amount can be 
solved simultaneously. Otherwise, the unit absorption and 
scattering of the pigment can be solved by the linear least squares 
method, and further optimized to minimize the average RMS error 
between measured and predicated reflectances for the tint ladder. 
Then, spectral reflectance of an unknown target is predicted by 
Eqs. (2) and (3) using all the pigments in the database. If the 
unknown target is a mixture of these pigments in the database, the 
predicated spectral accuracy is high; otherwise, there is no 
guarantee that good prediction can be achieved. For this research, it 
was assumed that the concentration threshold is 5% according to 
some prior knowledge about the unknown target. That is to say, the 
pigment was removed from the composition of the unknown target 
if the predicted concentration for this pigment was below the 
threshold. The pigment concentrations of the unknown target were 
optimized to minimize the weighted RMS error13 between 
measured Rλ and predicated spectral reflectance 

ˆ R λ ( m  accounts 
for the number of wavelengths). Since human visual system is more 
sensitive to mismatches in dark colors than light colors, the 
weighted RMS error is to weight spectral data with small 
magnitude more than the ones with larger magnitude. 

wRMS =
1 Rλ Rλ − ˆ R λ( )[ ]2

λ=1

m

 
m

 (4) 

The reflectance measurement is affected by the interface between 
air and the opaque layer and this index of refraction discontinuity 
can be corrected by the Saunderson equation.12 For sphere 
geometry with specular included, the relationship between 
measured reflectance Rλ,m  and internal reflectance Rλ,i can be 
expressed in the following two equations.  

Rλ,i = Rλ,m − k1

1− k1 − k2 + k2Rλ,m  (5) 

Rλ,m = k1 +
1− k1( ) 1− k2( )Rλ,i

1− k2Rλ,i  (6) 

The two parameters in the Saunderson equation were predefined as 
k1 = 0.03 and k2 = 0.6  according to a previous analysis. All the 
spectral reflectances were corrected using Eq. (5) and then 
transformed to 

K S( )λ,mix  by Eq. (1). 
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Virtual Camera Model 
A virtual camera model2 was used to test the method. Six-channel 
camera signals were computer-generated to simulate a traditional 
color-filter-array (CFA) digital camera combined with two 
absorption filters. The spectral sensitivity of the entire camera 
system for each channel Sλ,i

 can be expressed as the product of 
spectral transmittances of the absorption filter, Fλ, and infrared 
cut-off filter, Iλ , and the spectral sensitivity of the detector for the 
channel, Cλ,i

.  

Sλ,i = FλIλCλ,i
 (7) 

For an object with spectral reflectance Rλ , a camera signal for each 
channel, D i, is calculated by Eq. (8): 

Di = RλEλSλ,i( )
λ=1

m

 + ηi
  (8) 

where Eλ  is the spectral power distribution of the illuminant and 
ηi is a noise term. 

Matrix R Method 

 
Figure 3. Flowchart of the matrix R method with pigment mapping. 

The matrix R method combines the benefits of spectral and 
colorimetric transformations. First, as illustrated in the right branch 
of the flowchart, the camera signals are linearized using the gain-
offset-gamma (GOG) model, commonly used to characterize CRT 
displays, and then converted to tristimulus values. These tristimulus 
values are used to calculate the fundamental stimulus. Second, 
along the left branch of the flowchart, spectral reflectance is 
estimated from the same camera signals using a transformation 
matrix. Pigment mapping is incorporated next, indicated by the 
dashed line in the flowchart. The concentrations of pigments are 
estimated from predicated spectral reflectance, which are then used 
to calculate the smoothed spectral reflectance. For this modified 
version of the matrix R method, the smoothed reflectance is used to 

calculate the metameric black. Finally, the hybrid reflectance can 
be calculated combining the metameric black and the fundamental 
stimulus. 

Experimental 
In this experiment, the virtual camera was a Sinarback 54H color-
filter-array (CFA) digital camera combined with two absorption 
filters. The spectral sensitivities of the entire camera system are 
plotted in Figure 4, and the HMI light source was measured using a 
Photo Research PR704, shown in Figure 5. 
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Figure 4. Spectral sensitivities of the entire camera system. 
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Figure 5. Spectral power distribution of the HMI light source. 

The GretagMacbeth ColorChecker DC was used to calibrate the 
camera model, which included a transformation matrix from camera 
signals to spectral reflectance, six 1-dimensional (1D) look-up-
tables (LUTs) to linearize the camera signals, and another 
transformation matrix from the linearized camera signals to 
tristimulus values, as shown in the flowchart above. 

Another target was a custom target of Golden artist colors, 
abbreviated as the Golden target in the following discussion. This 
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target was made of titanium white and three colored pigments – 
hansa yellow opaque, pyrrole red and ultramarine blue. There were 
forty-five patches in this target. The first eighteen patches were tint 
ladders for the three colored pigments. The next nine samples were 
mixtures of two colored pigments without white paint. The last 
eighteen samples were mixtures of two colored pigments with 
white paint. All these samples were carefully prepared and 
measured using a GretagMacbeth ColorEye XTH sphere 
spectrophotometer with specular component included. 

Results and Discussions 
Pigment Mapping 
In this section, the accuracy of pigment mapping was tested based 
on two-constant Kubelka-Munk theory. The Golden target was 
made up of the known recipes. The concentrations were predicted 
using nonlinear optimization to minimize the weighted RMS error 
between measured and predicated spectral reflectances. The error 
metric for pigment mapping was the squared Euclidean distance 
between the known and predicated recipes. Table I lists the 
statistical results of the error metric for the pigment mapping. The 
algorithm successfully identified the number of pigments in each 
patch and determined their concentrations. The mean concentration 
error was 3.1%, but the maximum error was 15.7%. It was found 
that the errors were high for two colorant mixtures without white 
paint, corresponding to patch Nos. 19-27. It might be caused by the 
accuracy of two-constant Kubelka-Munk theory or lack of opacity 
for the paint samples. The existence of white paint improved the 
accuracy of the concentration determination. If patch Nos. 19-27 
were excluded, the mean error reduced to 1.0%, indicating a very 
successful pigment mapping. 

Table 1: Statistical Results for Pigment Mapping (%) 

Statistics Mean 
Std. 
Dev. 

90% 
percentile Min Max 

All patches 
 

3.1 4.6 11.0 0.0 15.7 
Excluding 
patch Nos. 
19-27 1.0 1.2 1.9 0.0 5.1 

 

The spectral reflectance can be estimated from both the known and 
predicted recipes using Eqs. (2) and (3). Figure 6 compares 
measured and estimated spectral reflectances with the spectral 
RMS error indicted in the legend. The estimated spectral 
reflectance from the predicted recipe had a smaller spectral RMS 
error than that from the known recipe. This was expected since the 
predicted recipe was optimized to minimize the RMS error between 
the measured and estimated spectral reflectances. Noticeable 
discrepancies were observed between the measured and estimated 
spectral reflectance from the known recipe. Such discrepancy might 
be caused by the accuracy of the Kubelka-Munk model. Other 
possible reasons might include measurement error, lack of opacity, 
non-uniformity of the paint sample, and numerical error. 
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Figure 6 Measured spectral reflectance (solid) and estimated spectral 

reflectance using the known (dashed) and predicted (dotted) recipes. 

 
Original Matrix R Method 
In this section, both the spectral and colorimetric accuracies of the 
matrix R method are provided in detail. The colorimetric error 
metric includes color difference CIELAB and CIEDE2000 under 
CIE illuminant D65 and for 2 degree observer, while the spectral 
error metric includes spectral RMS error and two metamerism 
indices that consist of both a parametric correction for CIE 
illuminant D65 (A) and color difference CIEDE2000 under CIE 
illuminant A (D65). 

Table 2: Colorimetric and Spectral Accuracies for Calibration 
Target – GretagMacbeth ColorChecker DC (CCDC) – Between 
Measured and Predicted Spectral Reflectances 

CCDC ∆Eab ∆E00 
% 

RMS 
MI 

(D65>A) 
MI 

(A>D65) 
Mean 1.06 0.69 1.48 0.24 0.30 

Std. Dev. 0.82 0.43 0.81 0.63 0.70 
90% 

percentile 
2.29 1.36 2.30 0.38 0.51 

Min 0.07 0.07 0.08 0.01 0.01 

Max 4.31 2.42 4.83 9.34 10.17 
 
Table 3: Colorimetric and Spectral Accuracies for the Golden 
Target Between Measured and Predicted Spectral Reflectances 
Without Pigment Mapping 

Golden ∆Eab ∆E00 
% 

RMS 
MI 

(D65>A) 
MI 

(A>D65) 
Mean 1.86 1.02 3.84 0.91 1.09 

Std. Dev. 1.34 0.64 1.34 0.74 0.85 
90% 

percentile 
3.97 2.01 5.61 2.09 2.68 

Min 0.17 0.14 1.49 0.08 0.07 

Max 5.28 2.64 6.02 2.92 3.49 
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Table 2 and 3 list the statistical results of the colorimetric and 
spectral error metrics for the calibration target and the custom 
target. It can be seen that colorimetric performances for both 
targets were very good. It means that nonlinear optimization to 
minimize color difference is an effective technique to improve 
colorimetric performance. However, spectral accuracy is 
unsatisfactory. For example, the mean spectral RMS error for 
Golden target was 3.84%, and the maximum metamerism index for 
the ColorChecker DC was very high. Figure 7 compares predicted 
spectral reflectance for the virtual camera model with in situ 
spectrophotometer for two patches in the Golden target using the 
original matrix R method. The method has some degree of difficulty 
in matching the long wavelength reflectance “tail” of the 
ultramarine blue (bottom). 

Improved Matrix R Method 
The original matrix R method can be improved by incorporating 
pigment mapping. The predicted spectral reflectance by the original 
matrix R method from the six-channel camera signals were used to 
estimate the concentrations of pigments for each patch, which were 
used to calculate spectral reflectance using Eqs. (2) and (3). This 
approach, as indicated by the statistical results in Table 4, didn’t 
change colorimetric performance, but as expected, significantly 
improved spectral accuracy. The mean RMS error decreased from 
3.8% to 1.1%, and the maximum RMS error was reduced almost 
two fold. The two metameric indices also decreased appreciably. 

Table 4: Colorimetric and Spectral Accuracies for the Custom 
Target – Golden Target – Between Measured and Predicted 
Spectral Reflectances with Pigment Mapping 

Golden ∆Eab ∆E00 
% 

RMS 
MI 

(D65>A) 
MI 

(A>D65) 
Mean 1.86 1.02 1.05 0.25 0.36 

Std. Dev. 1.34 0.64 0.48 0.22 0.26 
90% 

percentile 3.97 2.01 1.66 0.47 0.64 
Min 0.17 0.14 0.27 0.00 0.01 
Max 5.28 2.64 2.35 0.83 1.13 

 
 

Figure 7 illustrates the improvement of spectral accuracy by 
pigment mapping for two selected patches of the Golden target. For 
the white patch (top), the predicted reflectance by the improved 
matrix R method almost overlapped with the measurement. The 
improvement was even more pronounced for the ultramarine blue 
(bottom), where the predicted reflectance with pigment mapping 
followed much more closely with the measurement. It is then 
obvious that pigment mapping improves the spectral accuracy of 
the original matrix R method. 
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Figure 7. Spectral accuracy of the six-channel virtual camera without 

pigment mapping (dashed) and with pigment mapping (dash dotted) 

compared with in situ spectrophotometry (solid) for two selected patches of 

the Golden target. 

 
Conclusions 
Compared with conventional color imaging, spectral imaging takes 
advantage of much more embedded information in spectral 
reflectance. The original matrix R method combines the benefits of 
both spectral and colorimetric imaging, and it can provide a highly 
accurate match to an original target, both spectrally and 
colorimetrically. The spectral accuracy of the matrix R method can 
be further improved by pigment mapping. A virtual camera model 
was simulated and used along with a custom target of Golden artist 
colors to verify the recovery of the smoothness of spectral 
reflectance predicted by the original matrix R method. 
Incorporating pigment mapping reduces the mean spectral RMS 
error for the custom target from 3.8% to 1.1% and the maximal 
RMS by almost two fold. It also decreased the degree of 
metamerism appreciably. In conclusion, by incorporating pigment 
mapping, the improved matrix R method can achieve even higher 
spectral accuracy. 
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