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Abstract  
A chromagenic camera takes two pictures of each scene. The first 
is taken as normal but a specially chosen coloured filter is placed 
in front of the camera when capturing the second image. The 
chromagenic filter is chosen so that the combined image makes 
colour constancy, or white point estimation easier to solve. The 
chromagenic illuminant estimation algorithm is very simple. We 
compute the expect relations, currently implemented as 3x3 matrix 
transforms, between unfiltered and filtered RGBs for a range of 
typical lights. These relations are tested in situ for a given chro-
magenic image and the one that best predicts the image data is 
used to designate the illuminant colour.  

However, in experiments we found that a 3x3 matrix transform, 
while generally quite accurate, can fail to model the relationship 
between filtered and unfiltered RGBs for some colours (e.g. 
saturated colours) and so, the chromagenic algorithm which 
works very well on average can nevertheless, on occasion, work 
poorly. In this paper we assume that convex combinations in local 
areas of RGB space are translated to the same convex 
combinations for corresponding filtered RGBs and use this insight 
to relate filtered and unfiltered RGBs. These locally convex rela-
tions model the image data more accurately. Testing these 
relations in situ in images and choosing the one which best models 
the data provides surprisingly effective illuminant estimation 
algorithm.  

Experiments demonstrate that the chromagenic colour constancy 
algorithm provides superior illuminant estimation compared with 
conventional approaches (Gamut mapping, color by correlation, 
max RGB etc). This result holds across many different data sets. 
The method is also demonstrated to work on real images. The 
plausibility of the chromagenic approach for human vision is also 
discussed.  

1. Introduction  
About 10 years ago there was much interest in the so called 
multiple illuminant estimation algorithm. If we see the same scene 
under two or more lights is it easier to estimate the lights and so 
estimate the surface colours i.e. is it easier to solve for colour 
constancy? To answer this question D’Zmura and Iverson3 showed 
that if we had p measurements per pixel and s surfaces, elights and 
light and surfaces were described by M and N dimensional linear 
models then colour constancy could be solved (in many cases) so 
long as pse > = sM + eN − 1. Unfortunately, the DZmura and 
Iverson approach works very poorly in practice (even when there 
is many more data points than model parameters to solve for). The 
reason for the failure is that the solution method they propose is 
highly non linear and numerically unstable (small changes to the 

input data can lead to large changes in the estimated model 
parameters).  

On one level this paper is about getting the multiple light approach 
to work in practice. We begin by applying a well known sleight of 
hand in order to make the idea of multiple lights seem a more 
plausible starting premise for illuminant estimation: to a first 
approximation the image formed by placing a coloured filter in 
front of the camera is the same as changing the illumination 
impinging on the scene. So, we take an image, place a filter in 
front of the camera, take a second image and it is as if we have 
taken the same scene under two different light colours.  

Our first contribution, and is the reason we use the term 
chromagenic is to recognize that the choice of coloured filter 
matters.9 For example, placing a neutral density filter in front of a 
camera would result in RGBs which were the same as in the 
original image albeit scaled to be slightly dimmer. As such this 
filtering cannot add new information into the process. As an 
alternative one might be tempted to choose a filter that turns the 
3D camera into 6D (as far as that is possible) so that we measure 
more degrees of freedom in the data. This too turns out to be the 
wrong approach: a spiky filter can lead to independent 
measurements but this reduces the sensitivity of the camera and 
increases noise into the systems. Smooth filters cannot increase (at 
least not by much) the effective capture dimensionality. We 
instead choose a filter so that for a given light the filtered RGBs 
are, as close as possible, a linear transform from unfiltered 
counterparts. Moreover, the filter is also chosen so that the linear 
transform changes with different lights. A filter which makes the 
relationship between filtered and unfiltered RGBs depend on and 
vary with illumination chromagenic.*  

Our second contribution lies in the nature of the illumination 
estimation algorithm. In the prior two light estimation algorithms 
[], the image data is used to define the model parameters. As an 
example, the 6 measurements made by a chromagenic camera will 
mostly lie on a 3 dimensional plane (in 6 space) and the position of 
this plane depends on illumination. One solution strategy therefore 
would be to take our image data, fit the best plane and then look at 
the position of this plane to determine illuminant colour. 
Unfortunately, determining the best plane based on the data is 
problematic. First, the process depends on the data and is sensitive 
to outliers (e.g. data points which do not lie close to the true 
plane). Second, the mapping from plane position to illuminant 
colour is highly non linear: small perturbation in the plane position 
results in large changes in the estimates. These two problems are 
the main reason why conventional equation solving approaches to 
multi light illuminant estimation problem do not work.  
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In the chromagenic algorithm we compute the relations mapping 
RGBs to filtered counterparts before hand in a preprocessing step.8 
Not only are these relations based on reliable clean data but they 
can also be applied in situations where the image is rank deficient 
(the image responses are 1 or 2-dimensional rather than the 
required 3). Assuming we wish to discriminate between Nlight 
colours we compute the N 3x3 linear transforms that best map 
RGBs to filtered counterparts. Now suppose we have a 
chromagenic image where the light colour is unknown. To 
estimate the light, we simply apply each of the precomputed 
relations and find the one which best models the underlying data. 
The best relation defines the illuminant estimate. This simple 
canonical algorithm was shown to perform as well or better than a 
large set of other algorithms including gamut mapping and colour 
by correlation.8  

In this paper we propose to improve the performance of the 
chromagenic algorithm still further. We begin by considering the 
relationship between filtered and unfiltered RGBs. While a linear 
transform works well, we find it can fail for some colours 
(especially those that are highly saturated). However, experiments 
indicated that local convex combinations of RGBs tended to map 
to the same convex combinations in the filtered counterparts. Thus, 
we propose that the best locally convex mapping from RGB to 
filtered RGBs be used to drive chromagenic illuminant estimation.  

Using the Simon Fraser testing protocol we found that the 
chromagenic algorithm worked significantly better than all others 
(including gamut mapping, colour by correlation and the linear 
transform chromagenic approach). Moreover, we found that it 
delivered continued good performance when a variety of data sets 
(outside the protocol) were tested. And, here there was a very large 
improvement observed when the locally convex mapping model is 
used. In the final paper, the technique will also be validated on real 
images using a set of Hyperspectral outdoor images.14  

In section 2 we present the mathematical background and the basic 
canonical chromagenic algorithm. Section 3 presents the local 
convex relation model. Experimental data is reported in section 4.  

2. Illuminant Estimation  
Let us denote light, surface reflectance and device spectral 
sensitivity as E(λ), S(λ) and X

k
(λ) where k indexes R,G,B. For 

simple, Lambertian surfaces, image formation can be written as:  

 (1) 

where the integral is evaluated over ω the visible spectrum. 
It is useful to combine the triplet of responses x

k
 into a single 

vector which we denote x and refer to as the tristimulus 
values (underscoring denotes a vector quantity throughout 
the paper). 

Now, let us introduce linear models for light and surface: 

 (2) 

and the image formation equations (Eq. (1)) can be written as:  

 (3) 

where Λ (ε) is a 3× N matrix mapping reflectance weights to RGB 
responses. The kjth term of this Lighting matrix is equal to:  

 (4) 

One formulation of the illuminant estimation problem is that given 
a set of measured responses x how can we recover the illumination 
characteristics i.e. recover ε?  

The Linear models for light and reflectance, used in (2), are 
generally determined using Principal Component Analysis15 or 
Characteristic Vector Analysis12 in which case the model 
dimensions M and N are found to be 3 (for daylights) and 6 to 8 
for reflectances. Given that there are only 3 measurements at each 
point, these large model dimensions cast doubt on the solubility of 
illuminant estimation. However, looking at (3) we see that image 
formation is in reality predicated on a (light dependent) Lighting 
Matrix multiplying a reflectance weight vector. While we have no 
access to E(λ)and S(λ)we see that the linearity of (1) is preserved: 
if we add two lights together we add the respective lighting 
matrices. It follows that the dimensionality of light and surface, 
viewed from the perspective of image formation, depends on how 
well a set of M, 3 × N Lighting matrices interacting with N × 
1weight vectors model tristimuli. By reasoning in this way 
Marimont and Wandell13 demonstrated that a very good model of 
image formation is possible with M = 3 (three lighting matrices) 
and N = 3 (three degrees of freedom in reflectance).  

This is encouraging because the model numbers are small. 
However, they are still not small enough to enable us to decouple 
light and reflectance. To see why, suppose we have a single 
illuminant and S reflectances, providing us with 3Stristimuli and 
3S + 3 unknowns. Even by observing that there is a scalar 
indeterminacy between surface lightness and illuminant brightness 
so that the unknowns number 3S + 2, this is still less than the 
number of known quantities: 3S < 3S + 2. Suppose now that we 
observe the S surfaces under two lights. We now have 6S 
measurements and 6S > 3S + 5(5 = 6 − 1 = two lights multiplied 
by 3 minus the brightness indeterminacy). Indeed, a number of 
authors3,5,17 have presented algorithms which can algebraically 
solve the colour constancy problem in this case. However, 
performance in practice is poor.3,4  

Rather than capturing a scene under two different lights we might 
instead assume a second, prefiltered image. We can write the new 
filtered tristimuli as:  
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 (5) 

We define a filtered illuminant  

(6) 

and (5) becomes  

 (7) 

where throughout the paper the superscript F denotes dependence 
on a coloured filter. From a naive equation counting perspective 
we now have enough knowns to solve for our unknowns: we 
simply assume two pictures of every scene: one filtered, one not. 
Next we investigate how we can use these two images to estimate 
the scene illuminant. We begin by defining the canonical form for 
a chroma-genic lighting matrix: 

 (8) 

The top 3 rows of this canonical form (the right hand side of (18)) 
are equal to the Identity matrix and the bottom 3 are equal to the 
linear transform which takes unfiltered tristimuli to filtered 
tristimuli. Clearly, all we have done here is post-multiply by Λ−1 
and so the canonical form must span the same 3 dimensional plane 
in 6-space. Indeed, all 3dimensional planes (embedded in 6-d) can 
be written as a linear transform P from their canonical form:  

 (9) 

The structure of Eq. (9) provided the inspiration of the 
chromagenic algorithm. Let us write the responses for n surfaces 
as a 6 × n matrix:  

 (10) 

where Ω here is 3 × n (3 weights for n surfaces). From (Eqs. (8) 
and (9) we expect:  

 (11) 

The canonical form of chromagenic illuminant estimation works as 
follows. For a database of mlights E

i
(λ) and n surfaces S

j
(λ) we 

precalculate T
i
 ≈ X

i

F X
i

+ where X
i
 and X

F
 represent the matrices of 

unfiltered and filtered tristimuli to the n surfaces under the ith light 
and + denotes pseudoinverse.16 Given Psurfaces in an image we 
have 3 × P matrices X and XF. Then the estimate of the scene 
illuminant is E

est
(λ) where  

 (12) 

and  

 

There is a subtlety in the algorithm which distinguishes it from 
other multiple light approaches. Specifically, the relationship 
between unfiltered and filtered responses under each of a set of 
candidate lights is calculated in a preprocessing step and then each 
of these relationships are tested to see how well they account for 
the data. In previous approaches the data itself is used to define the 
model parameters.3.12 For example, we could find the best 
transform based on our data (by solving for T using least squares) 
and then see how this compares with precomputed transforms. 
Unfortunately in this approach the transform is based on the 
quality of the data (which may be poor).  

The failure is easiest to understand in the case where X is rank 
deficient. In this case the pseudo inverse is numerically highly 
unstable and so will be sensitive to small changes in the responses 
including small amounts of noise. Of course the precomputed 
relations that we use will still be useful in discriminating between 
lights. This rank deficient case can occur when an scene has small 
colour complexity and it is precisely these scenes which 
conventional algorithms struggle to solve.  

It has been shown8 that this canonical algorithm performs 
statistically significantly better than other methods including color 
by correlation and gamut mapping. However, chromagenic 
illuminant estimation suffers also from outliers that result in large 
estimation errors. This is due to the fact that while a simple linear 
transform captures the characteristic of a particular illuminant 
quite well, it does not do so uniquely.  

3. Convex Relation Model  
A linear model of illuminant change is not perfect and in fact it is 
possible for the same linear mapping to correspond to very 
different illuminants and hence result in large estimation errors. 
Another way of looking at the relationship between unfiltered and 
filtered RGBs is by a locally linear mapping approach. More 
specifically we can express a filtered RGB as a weighted average 
of it’s neighboring RGBs, such that these weights are arrived at 
from the unfiltered RGBs. In this way we achieve a significantly 
more accurate mapping that also results in a reduced estimation 
error.  

Suppose we have an RGB in an image. Given a set of training 
RGBs and their corresponding filtered RGBs, we find the closest 
three RGBs from this training set to the image RGB. Then we can 
express this RGB as a weighted linear combination of the three 
training RGBs, with weights that are nonnegative and less than or 
equal to one and that sum to one. Such combinations are referred 
to as convex combinations. Let x be an image RGB and xF it’s 
corresponding filtered counterpart. Suppose the training set is 
denoted as yi and yF, then we write:  
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where y
i
, y

j
, y

k
 are the three closest RGBs to x. Assuming the 

training RGBs and image RGBs correspond to the same 
illuminating light source, also:  

 

with the same weights α1, α2, α3. However given that we don’t 
know the illuminant, this will not hold but for the correct light 
source.  

Thus the training procedure for this method is simply to store 
corresponding sets of RGBs and filtered RGBs. Then, given a set 
of image RGBs and filtered RGBs, each of the image RGBs is 
expressed as a convex combination of the training RGBs for each 
training light in turn. The sets of convex weights α1, α2, α3 are then 
applied to the filtered RGBs corresponding to the same RGBs 
which were closest to the image RGB. The result is a predicted 
filtered RGB. The distance between the predicted and the actual 
filtered RGBs is then a measure the likelihood of the particular 
illuminant. The smaller the fitting error, the better the 
representation of the training set.  

4. Experiments  
We follow the Simon Fraser synthetic colour constancy 
evaluation.1 The reflectance set consists of 1995 meausured 
reflectances which broadly represent most typical surfaces. There 
are 87 measured illuminants (including Daylights, fluorescents and 
incandescents) which are used to train the algorithms. Estimated 
SONY DXC900 sensitivities are used for our camera sensors. To 
evaluate a colour constancy algorithm there is a set of 287 test 
lights in the Simon Fraser set. This set comprises the original 87 
together with an additional 200 which are convex combinations of 
these. Thus we expect chromagenic colour constancy to deliver 
imperfect constancy as it must answer with one of the 87 test 
lights. We now randomly select 2, 4, 8, 16, 32 and 64 surfaces and 
generate the 6 corresponding images (one image per surface set) 
for each of the 287 lights. For each of the 6*287 images we run 
our algorithm and recover an estimate of the illuminant. Error of 
recovery is calculated in RGB space: we calculate the RGB for the 
estimated illuminant, , and compare it with the the RGB for the 
actual light . Error is defined to be the angle between these two 
vectors. This process is repeated for 1000 times.  

In Figure 1 we plot number of surfaces against the median angular 
error for 6 algorithms: Max RGB,11 greyworld.2 Linear 
programming gamut mapping,6 color by correlaton7 the canonical 
chromagenic algorithm and the new convex combination 
approach. In grey world the rgb for the illuminant is the average 
image colour. In modified grey world a weighted average is used 
(to account for biases in the reflectance set). Max RGB returns the 
maximum R, G and B in an image as the illuminant estimate. 
Gamut mapping solves for colour constancy by imposing the 
constraint that the range of colours observable depends on 
illumination (the reddest red response cannot occur under blue 
light). Color by correlation is a probabilistic approach which re-
turns the maximum likelihood solution. The latter two approaches 
deliver relatively much better colour constancy especially for 
small numbers of surfaces. However, this performance is achieved 

at the price of relatively higher algorithm complexity and the need 
for significant calibration.  

 
Figure 1. Colour constancy algorithm performance in terms of median angular 
error as a function of log 2 number of surfaces in a scene under the Simon 
Fraser training and testing setup.  

The above results are remarkable in that regardless of the number 
of surfaces, the convex combination approach results in identical 
estimation error at a level to which the best algorithms converge 
for higher numbers of surfaces. This can be explained because our 
approach is optimal if training data represents the testing data well, 
which in the case of the Simon Fraser testing setup is the case.  

In a second experiment we kept the training procedure the same as 
above, training on 87 illuminants and 1995 surfaces, but tested on 
a set of 99 daylights and 404 natural surface reflectances,18 neither 
of which are in the training set. The results are plotted in Figure 2.  

Errors are significantly higher here, indeed most algorithms simply 
fail this test resulting in very high estimation error, reflecting the 
substantial difference between training and testing data. Even 
algorithms such as Max RGB or Gray World, not affected by a 
training procedure, result in significantly higher error than in the 
above test. However, the good performance of the convex 
combination chromagenic approach relatively to the others is 
maintained, clearly outperforming all algorithms. 

5. Conclusions  
In this paper we presented the chromagenic illuminant estimation 
algorithm developing it further by introducing the convex 
combination model of relating RGBs and their filtered 
counterparts. We have introduced the canonical algorithm in detail 
and described the principle of the new idea to use a training set of 
corresponding RGBs and filtered RGBs and express each given 
image RGB and filtered RGB as a convex combination of the 
training data. Looking at the goodness of this fit we then deduce 
which of the possible training lights might have been the illumi-
nating light source in a scene. We have conducted a set of 
preliminary experiments and have demonstrated that even when all 
other algorithms fail, this new approach maintains good 
performance. We will enrich the experimental part in the final 
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paper by providing more analysis and also results from outdoor 
images using a set of hyperspectral data.  

 
Figure 2. Colour constancy algorithm performance in terms of median angular 
error as a function of log 2 number of surfaces in a scene, training on Simon 
Fraser data and testing on 99 daylights and 404 natural reflectances.  
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