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Abstract  
Seeing 600th anniversary of Gutenberg’s birth in 2000 A.D., we 
should look back the historical significance of letterpress 
technology and take a step forward into color imaging new age. 
Now digital imaging technology plays a leading role in visual 
communication, but meets severe assessment to satisfy human 
vision. Software on “What’s human vision seeing?” is essential to 
capture, store, transmit, and reproduce a truly realistic image just 
as human vision seeing. Not only advances in high precision and 
high definition digital media, but also Intelligent Image Processing 
technologies will be helpful for more aesthetic and pleasant 
imaging. We are approaching towards this direction from a stance 
of engineering to use the scientific results in human vision 
research. This paper introduces just a little “intelligent” 
processing to “image sharpening”, “local contrast enhancement”, 
and “color transform” by region-based, spatially-variant, and 
scene-referred approaches.  

Introduction  
During past 10 years, CMS (Color Management System)31 has 
developed to communicate the device-independent colors across 
multi-media and now is introducing some human visual aspects into 
standardization. Image processing technologies would be also 
requested to take the vision-based and intelligent approaches to 
contribute to the next age color imaging. Figure 1 illustrates a trend 
on vision-based CMS and a mission for image processing.  

 
Figure 1. Vision-based CMS and Mission of Image Processing  

INTELLIGENT Center/Surround Processing  
The Center/Surround (C/S) 10 response is the first step in human 
vision, which represents many aspects of visual perception. The 
C/S model has hinted to sharpness, lightness, or contrast 
improvements in image processing.  

Image Sharpening  
The center/surround cell is well known to respond to the edge and 
not to diffuse light. The edge response in retina is modeled by a 
second Gaussian Derivative (GD) as illustrated in Fig. 1.  

 (1) 

 
Figure 2. Edge response of center/surround cell in retina  

The edge signal is extracted from a blurred image g(x, y) by  

 (2)  

As well-known as USM (Unsharp Mask) or Laplacian operator, 
image sharpening process is generalized by  

 (3)  

Since a simple linear USM controls the edge strength by only a 
constant λ, it enhances unwanted background noises together with 
signals. To optionally sharpen the edge with suppressing noise, 
many intelligent methods have been developed. For instance, 
Adaptive USM4 operates a spatially-variant coefficients λx(x, y) 
and λy(x, y) separately to a horizontal and a vertical component 
zx(x, y) and zy(x, y) as follows.  

 (4) 
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Different from a conventional USM, Λ works sensitive to edges but 
insensitive to slow gradients. As well, Cubic USM5 introduced a 
cubic function coupling a horizontal and a vertical luminance 
difference with a quadratic function sensitive to a high-gradient but 
less sensitive to a slow-gradient. Rational USM6 extended Cubic 
USM by enhancing the horizontal and vertical edges independently 
depending on a local activity. Many other ideas to merge 
sharpening and smoothing are reported such as Lower-Upper-
Middle USM 7or Fuzzy filters and so on.8, 9  

Multi-Scale Image Sharpening Method  
The above methods work insensitive to the flat area noise but don’t 
suppress it perfectly. To suppress the flat area noise completely we 
developed a multi-scale sharpening method11, 12 as shown in Fig. 3. 
Here, the image is clearly separated into the edge and non-edge 
areas by pre-scanning GD filter, generating the edge map M(x, y). 
A non-edge flat area is assigned to M(x, y)=0, and edge areas are 
classified to M(x, y)=1: soft edge, M(x, y)=2: medium edge, and 
M(x, y)=3: hard edge. Thus, multiple GD operators with different 
deviations, σ1, σ2, and σ3 are selectively applied by looking up the 
edge map M(x, y). The flat areas with M(x, y) =0, are intentionally 
smoothed by operating the normal Gaussian filter as follows.  

 (5) 

where, zM(x, y) denotes a multi-scale GD signal with σM fit to 
enhance the soft, medium, and hard edges for M=1,2, and 3. The 
proposed method resulted in natural image sharpening with 
smoothing the background noises as shown in Fig. 4.  

 
Figure 3. Proposed Multi-Scale Image Sharpening method  

 
Figure 4. Comparison in adaptive image sharpening methods 

Retinex and its Extension  
Recently, spatially-invariant point process has been evolving into 
spatially-variant process. Retinex13 is a root of spatially-variant 
vision model. Basically it is a model to remove the non-uniformity 
of illumination as shown in Fig. 5. Simply, the image I captured by 
camera is equivalent to the product of the reflectance R and 
illuminant distribution L. According to R ≅  I /L, the reflectance R 
is restored from Image I by inferring the illumination L.14-17  

 
Figure 5. Removal of Illumination in C/S Retinex  

A typical C/S MSR (Center/Surround Multi-Scale Retinex) by 
NASA18 has been effectively applied to improve the shadow 
appearance in digital camera images and now into HDR (High-
Dynamic Range) images. However, in practice, it needs some 
technical skills, such as regulation in wide-spread output range due 
to the use of Log space, or correction in color imbalance caused by 
independent RGB channel process. In particular, the decision of 
weights for integrating multiple scales of SSR is a most 
troublesome problem. We proposed Adaptive Scale-gain19,20 MSR 
model1 to solve these questions by, [1] Linear C/S process without 
Log, [2] Use of Luminance Y to keep color balance, and [3] 
Automatic weights setting, as given by the following equations.  

Adaptive Scale-Gain MSR Algorithm  

 (6) 

 (7) 

 (8) 

 (9)  

  (10) 

 (11) 
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Fast MSR by Gaussian Pyramid  
A fast algorithm to reduce the expensive MSR is introduced.  

Our adaptive scale-gain MSR works in full automatic and nice in 
color, but it takes too much time to compute a large kernel size of 
surround. Gaussian Pyramid proved to be very effective to save 
the time by substituting it for small kernel size as shown in Fig. 6.  

 
Figure 6. Fast convolution in MSR by Gaussian Pyramid  

Retinex aims to reproduce the unbiased visual image, but the 
original is usually unknown unless we see the same scene by our 
naked eye. To seek the optimum parameters we synthesized a test 
target visually matched to the “color block” q) in our Lab by try and 
error using Photoshop as illustrated in Fig. 7. The color differences 
between this visual target and the processed images are evaluated. 
The adaptive scale-gain MSR resulted in the better color rendition 
than NASA with half in ∆ Eab

* even using the Gaussian Pyramid.  

Local Contrast Enhancement  
Retinex discounts a spatial non-uniformity of illumination based on 
C/S process, where the surround S reflects a global average in the 
image lightness. To recreate the viewer’s sensation of the captured 
scene, a high dynamic range (HDR) has to be compressed to a low 
dynamic range (LDR) of the display devices. Recently HDR to 
LDR tone-mapping methods have been developed actively. 
Spatially-invariant Tone Reproduction Curve (TRC) operates 
point-wise on the image based on the global adaptation of human 
vision, as reported by Tumblin and Rushmeier21 or Ward Larson.23 
While spatially-variant Tone Reproduction Operator (TRO) 
proposed by Chiu,22 Pattanaik,24 Fattal,26 or Fairchild27 attempts to 
preserve a local image contrast. However, most of TRO algorithms 
haven’t clarified the relationship between the input/output TRC and 
the local image contrast. Monobe et al28,29 introduced anew 
criterion to a local contrast. They proposed LCRT (Local Contrast 
Range Transform) operator to preserve a local contrast between 
input and output images under the given TRC as illustrated in Fig. 
8. 

The condition to preserve the local contrast is simply described by  

 (12) 

 
Figure 7. Synthesis of visual test target and evaluation. 

Here, f(x,y) and fave(x,y) denote the input luminance level and its 
local average, g(x,y) and gave(x,y) denote the output luminance 
level and the local average of each pixel at (x, y), respectively. 
Taking the Log and denoting the variables in capital letters,  

 (13) 

In Log space, taking a first-order Taylor expansion,  

 (14) 

where, P{F(x , y)} denotes an arbitrary TRC in Log space. Finally, 
the basic formula of LCRT is described in linear space as  

 (15) 

Application of LCRT to Digital Video Camera  
Digital video camera (DVC) is required to reproduce the main 
objects in shadow to middle luminance range as nice as possible 
through the dynamic range compression. For this reason, DVC 
product has adopted a “knee curve” to dynamic range compression, 
but it is difficult to preserve the highlight contrast. We applied 
LCRT to DVC and improved the visibility in a highlight range.29 
Because the knee curve = p{f(x ,y)} in Equation (3) must be 
differentiable, it’s approximated by a continuous cubic function and 
a local average is taken by convolving the luminance image Y with 
a Gaussian filter as illustrated in Fig. 9.  
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Figure 8. Local Contrast Enhancement by LCRT  

 

 
Figure 9 Application of LCRT to contrast enhancement in DVC  

 
Figure 10. Improved highlight contrast in background by LCRT  

 

 (16) 

Figure 10 shows how a background contrast is improved in the 
highlight of DVC image. Retinex also enhances the contrast but 
reproduces a girl just as taken under uniform illumination, while 
LCRT preserves it as same as original under the natural light.  

Application of LCRT to Video Projector  
LCRT is also applied to improve the visibility in display devices 
under ambient light. Figure 11 illustrates a “fadeless” projection 
system28 by LCRT. The system works to keep the visual contrast 
on screen in light room as same as that in dark room. Figure 12 
shows a sample after vs. before LCRT process.  

 

 
Figure 11. Fadeless video projection by LCRT  
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Figure 12. Enhanced contrasts for video projector by LCRT  

INTELLIGENT Color Transform  
Color reproduction systems have advanced as follows.  

1st generation: Colorimetric Color Reproduction based on 
device-dependent closed system.  

2nd generation: Cross-media Color Reproduction based on 
device-independent open system.  

3rd generation: Color Appearance Reproduction based on human 
visual CAM (Color Appearance Model).  

Now which way should we step forward to the next age? With the 
advent of various FPD (Flat Panel Display) raised a curtain on the 
new display age in place of CRT. A novel CMS for FPD is 
necessary. Since new devices such as LCD or PDP create a gamut 
space different from CRT, GMA (Gamut Mapping Algorithm) is 
one of the key technologies31 to make use of the display gamut for 
pleasant color imaging. Towards “pleasant color imaging”, we have 
developed  

[1] Versatile GMA39 that maps from “wide” to “narrow” or 
“narrow” to “wide” gamut in bi-direction.  

[2] Scene-referred color transfer model37 that produces a pleasant 
image modeled on a reference target image.  

Scene-referred Color Reproduction  
CMS transfers a color via PCS with device profile created by 
measuring any standard color chart as a colorimetric reference. A 
“scene-referred” model tries to reproduce a color most to his/her 
taste learning from a reference target scene without using test chart 
as illustrated in Fig. 13.  

 
Figure 13. Concept of scene-referred color transfer system  

Reinhard et al32 tried to transfer the scene color from one to another 
using vision-based lαβ color model. Zhang et al33 applied it to 
correct the color imbalance between the right and left image in the 
same panoramic scene. These approaches are addressed to transfer 
the color atmosphere from one scene to another but the model 
doesn’t work well for the scenes with color dissimilarity. Although 
lαβ is a vision-based de-correlated color space, its major axes 
don’t always correspond to the principal components of individual 
image. Hence, lαβ works better for the scenes with color similarity 
but not for color dissimilarity. We introduced PC (Principal 
Component) matching model34-36 to interchange the object colors 
between a pair of clusters with color dissimilarity. Different from 
lαβ model, a PC of source color cluster is matched to that of target 
through the matching matrix M as shown in Fig. 14. The matching 
matrix jkMC is given by  

 ( )( )( )orgjjkDSTkCjk ASAM 1−=  (17)  

 
Figure 14. PC matching model between color clusters  

It has two basic functions, “Axes matching” by rotating its cluster 
along the eigenvectors and “Variance matching” by scaling the 
color distribution along the PC axes. jAORG and kADST denote the 
eigen matrix for a source cluster j and a target cluster k. The scaling 
matrix jkS is a diagonal matrix with the entries of eigen values’ 
ratio. When the scene color distribution can be handled as a single 
cluster, its total scene color is easily interchanged with that of 
another scene. Figure 15 shows a scene color interchange sample. 
While, if the scene is composed of discrete multiple clusters, the 
PC matching should be done between each pair of separated color 
clusters after image segmentation. Figure 16 is our local color 
interchange model combining PC matching and image 
segmentation, where unsupervised [k-means + Baysian] classifier 
is introduced to segment the multi-clustered color objects.  
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Figure 15. Color interchange sample for dissimilar color scenes  

 
Figure 16. Local scene color interchange model for multiple clusters 

To What Extent Is Image Gamut Expandable? 
The up-to-date imaging devices are going ahead towards “realistic 
color reproduction” with HDR and wide Gamut besides high 
resolution. Since a source image has its own color gamut, 
“pleasant” color is reproduced by applying an adaptive GMA38, 39 
depending on the image gamut is wider or narrower than the 
display’s. A digital camera image in our daily life rarely fulfills the 
display gamut so that “gamut expansion” is useful to render the 
more vivid colors. Figure 17 shows a gamut comparison of recent 
display devices. Although CRT gamut can be calculated by a 
model-based additive mixture of RGB primary, those of LCD or 
PDP don’t obey such linear model because the matrix cells are 
coupled with cross-talks. Hence the gamut surfaces in Fig. 17 are 
created based on spectral measurement of color chips on display 
screen. Figure 17 introduces a sample image by our gamut 
expansion GMA expanded up to the gamut boundary of each 
device. It tells how higher chromatic images are possible to 
reproduce. 

Conclusions 
The paper introduced our activities on color image processing by 
Vision-based and Region-based spatially-variant image transform. 
Taking the scientific fruits on vision research into engineering, a 
new field of applications for pleasant and realistic color imaging 
will be expected to open.1-3 

 
Figure 17. Color gamut of typical display devices 

 
Figure 18. Most colorful images on display by gamut expansion GMA 
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