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Abstract 

A psychophysical experiment was performed to measure the 
visibility of chromatic noise. Through Principle Component 
Analysis (PCA) on the results of this experiment, an 
orthogonal color space with the luminance channel 
independent of chromatic channels was constructed. By 
transforming noise images into this space, the visibility of 
chromatic noise can be predicted. Comparison with other 
opponent color spaces illustrates their relative properties 
regarding cross-talk of chromatic noise into the luminance 
channel (or vice versa). 

1. Introduction 

In digital imaging, the problem of reducing the amount of 
data required to represent a digital image is addressed by 
image compression. Redundant data are removed for 
reducing the storage required to save an image or the 
bandwidth required to transmit it. Transformation from a 2-
D pixel array into a statistically uncorrelated data set is 
applied prior to storage or transmission of the image.1 In 
digital photography, there is a need to minimize noise or 
artifacts in the luminance channel and put it into the less 
perceptible chrominance channels. For image quality and 
image difference metrics, images are first transformed into 
an opponent color space for efficient computation and spatial 
processing such as spatial filtering or chromatic 
subsampling.2,3 Ideally the opponent color space would be 
orthogonal so that any processing performed on one channel 
does not affect the other channels. 

Opponent color encoding, as described by Hering, is an 
important concept in color appearance. The existence of 
opponent colors provides an efficient neural representation 
of color by decorrelating the cone absorptions that represent 
an inefficiency in the visual coding of spectral information.4 
The idea of efficient transmission of opponent coding was 
also supported by Buchsbaum and Gottschalk from the point 
of view of information theory.5 Psychophysical experiments 
have shown that the human visual mechanisms can be 
separable in pattern and color.6,7 There are three cone types in 
the retina that are sensitive to short (S), middle (M) and long 

(L) wavelengths of visible light. The three signals are then 
transformed to opponent signals by the neurons of the retina 
before being passed on to the brain. The summation of the 
three cone types (L+M+S) produces an achromatic response. 
Differentials of the cone signals constitute chromatic 
opponent signals: red-green (L-M+S) and yellow-blue 
(L+M-S).  

Contrast sensitivity functions describe the visual 
system’s sensitivity to harmonic stimuli as a function of 
spatial or temporal frequency. They change with spatial 
frequency and background mean luminance. Research has 
shown that the achromatic, or luminance, contrast sensitivity 
function peaks at an intermediate spatial frequency, and the 
low or high frequency sensitivity diminishes.4 Weber’s Law 
indicates that the threshold increases roughly in proportion 
to mean background intensity. It is universally accepted that 
the luminance mechanism has the highest spatial resolution 
and that the contrast sensitivity functions (CSFs) are band-
pass for luminance channel, and low-pass for the chromatic 
channels.7,8 Owen et al. did measurements of CSFs in not 
only red-green and yellow-blue directions but also in lime-
purple and cyan-orange directions, resulting in low-pass 
consistency for all chromatic directions.9 Since contrast 
sensitivity functions describe the opponent response to 
complex stimuli, describing an image in an opponent color 
space makes sense for application of the contrast sensitivity 
functions as spatial filters. There are many opponent color 
spaces described in literature. Different color spaces have 
been designed for specific applications. Below, the YCbCr, 
YIQ and IPT space are described briefly as examples. 

YCbCr space is a subset of YUV that scales and shifts 
the chrominance values into the range of 0 and 1. It is often 
used in component digital video such as studio video, JPEG, 
and MPEG.10 

YIQ space is a television broadcast standard first 
adopted by the National Television Standards Committee 
(NTSC) of the United States for broadcast television in 
1953. The purpose of using YIQ space in television 
broadcast was to“maximize the perceptual resolution of the 
encoded color information using the fixed amount of 
bandwidth available in a broadcast signal in such a way as to 
be compatible with black and white transmission.”11 The Y 
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channel is used for encoding luminance information, the I 
axis encodes chrominance along a blue-green to orange 
vector, and Q along a yellow-green to magenta vector.  

IPT color space has been developed to be more uniform 
in perceived hue than traditional color spaces such as 
CIELAB.12 This attribute leads it very useful in image 
processing application such as gamut mapping. The lightness 
dimension is denoted as I, the red-green dimension is P, and 
the yellow-blue dimension is T. The input of the model is 
CIEXYZ for the 1931 2-degree observer with an illuminant 
of D65. It includes two linear transforms and an exponent 
transform. IPT space has been tested by Zhu et al. and 
showed good performance in space uniformity and hue 
constancy.13 

Borer and Süsstrunk14 introduced an opponent color 
space with three components of blue-yellow, red-green, and 
green-red, aiming to mimic the color processing in the 
primate retina. Spatial extension was used to distinguish the 
last two.  

In the present paper, a psychophysical experiment was 
performed using the method of adjustment for subjects to 
adjust chromatic noise image until it is least perceptible. A 
preliminary orthogonal space was derived by performing 
PCA on the experimental data. Principal Components 
Analysis (PCA) is a powerful technique to generate a set of 
principal components orthogonal dimensions, avoiding 
redundant information. Each principal component is a linear 
combination of the original variables. This PCA space was 
compared with other opponent color spaces by transforming 
various luminance and chromatic noise images into these 
spaces. 

2. Experimental 

2.1 Equipment 
An IBM T221 LCD was used to display the stimuli. The 

22’’ LCD is 3840 by 2400 pixels, and was driven by an ATI 
Radeon 8500 graphic card, controlled by an Apple dual 
processor G5. The white point of the LCD was 250 cd/m2, 
measured with an LMT photometer. The display was 
colorimetrically characterized using an LMT colorimeter 
using techniques described in reference 15. The average 
DE00 for all measurements is 1. 

2.2 Subjects 
Twenty-five observers including fourteen naive and 

eleven experts served as subjects. The age ranged between 
23 and 43. All the subjects had normal color vision and 
normal or corrected-to-normal visual acuity. 

 

2.3 Stimuli 
Each stimulus was a chromatic noise image made of two 

additive complimentary colors. Stimuli were created for 
combinations of three relative luminance levels 
corresponding to L* values of 30, 50, and 70 relative to 
display white (Y=0.1, 0.29, 0.65), and four complementary 
hue pairs. One end of each pair was defined in a u’v’ 

chromaticity space relative to the unique hues in CIELAB 
space (unique Yellow, unique Red, half way between Yellow 
and Red, half way between Red and Blue). See Figure 1 for 
details. The other end of the noise vector was defined as the 
additive complimentary going through the white-point with 
equal u’v’ steps. Two “chroma” levels were examined. Three 
spatial frequency bands: an octave filter centered at 1 cpd 
(50% at 0.5 & 2 cpd), another centered at 4 cpd (50% at 2 & 
8 cpd), and uniform white noise with a maximum frequency 
of 60 cpd were also used. In all this represents 72 
combinations of 4 color-vectors, 2 saturations, 3 luminance 
levels and 3 frequency bands that were evaluated. Figure 2 
shows the four color vectors for two chroma levels in u’v’ 
space. The blue long lines represent high chroma, and red 
short lines represent low chroma. Each stimulus trial was 
repeated four times for a total of 288 settings by each 
observer.  

 

Figure 1. Hue angles (CIELAB) used to guide selection of the 
complementary hue vectors. (Ref. 16) 
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Figure 2. Four vectors for two “chroma” levels. Blue long lines 
represent high chroma; red short lines represent low chroma. 

 
 
Experimental noise images were created as follows. 

First, a random noise image was created. This noise image 
was filtered using octave spatial filters to obtain the desired 
spatial frequency noise patterns. An octave filter is a special 
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Gaussian filter in log frequency space. Full Width Half 
Height (FWHH) occurs at half and twice the frequency of 
the peak. Then a color map representing a line connecting 
the two endpoints in the three dimensional space u’v’Y was 
constructed. One end of the hue pair had fixed chromaticity 
and luminance. The chromaticity of the other end was fixed 
such that it was an equal distance from the white point as the 
fixed end in u’v’ space. The observers were asked to adjust 
the luminance of the other end (thus also adjusting the slope 
of the line connecting the endpoints) until the chromatic 
noise was least perceptible, e.g. the noise field was most 
uniform. The observers did not necessarily know that the 
luminance of one end was fixed. Some stimuli examples are 
shown in Figure 3. The first row shows all four color-vectors 
at one luminance and spatial frequency. The second row 
shows all three luminance levels for one color-vector and 
frequency. The third row shows all three frequency bands for 
one luminance and color-vector.  

 

 
 R-G         O-C         Y-B       M-YG 

 
Y=0.1      Y=0.29     Y=0.65 

 
   1oCenter    4oCenter    White Noise 

Figure 3. Stimuli examples presented in the experiment 

 

2.4 Procedure 
The stimulus was centered on the characterized IBM 

LCD as shown in Figure 4, with a viewing distance of three 
feet, subtending four degrees of visual angle. The 
background was set to 50% percent of Y of the white point 
of the display and subtended about 12o of visual angle. The 
remainder of the display was masked. The experiment was 
divided into two sessions and each session consisted of two 
repetitions of each of the 72 stimuli.  

Most observers felt it more difficult to minimize the 
appearance of noise for low frequency stimuli. This is 
expected since the contrast sensitivity for chromatic 
variation is much more sensitive to low frequency 
information. In effect, the observers were setting the patterns 
to constant perceived luminance under the hypothesis that 
luminance noise is more easily perceived than chromatic 
noise.  

 

Figure 4. Stimuli presentation in the psychophysical experiment. 

3. Results and Discussion 

3.1 Inter and Intra-Observer Variance 
Inter-observer and intra-observer standard deviation 

(STD) is reported in Figures 5 and 6. The inter-observer 
STD is rather small, ranging from 0.01 to 0.05 relative CIE 
Y units, 0-1 range. At the low luminance level, STD is 
smaller than that at higher luminance level. Of note, these 
results do not strictly follow Weber’s law, with the 
uncertainties (a measure of thresholds) increasing more 
slowly than predicted by Weber’s law. When subjects 
performed the experiment they found it more difficult for 
higher luminance stimuli, but much easier for lower 
luminance stimuli. This might be related to the overall 
increase in both luminance and chromatic contrast sensitivity 
at higher luminance levels. Intra-observer STD, as shown in 
Figure 6 is of a similar magnitude to the inter-observer STD. 

 

   Inter-Observer STD

0. 00
0. 01
0. 02
0. 03
0. 04
0. 05
0. 06

0. 00 0. 20 0. 40 0. 60 0. 80
Y

ST
D

 

Figure 5. Inter-observer STD. 
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Figure 6. Intra-observe STD. 
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Of particular interest for this experiment are any 
possible effects of frequency, luminance and chroma on 
observer STD. Figure 7 illustrates that at the lowest 
frequency the STD is the smallest compared to the 
intermediate and high frequencies. According to chromatic 
contrast sensitivity functions, the human visual system has 
higher sensitivity for low frequency than for high frequency. 
This indicates that chromatic contrast is easier to distinguish 
at lower frequencies than at higher frequencies even though 
observers felt it more difficult for low frequency stimuli 
during the experiment. This might be the reason for the 
smaller STD at low frequencies. Figure 8 illustrates that 
differences in chroma appear to have no effect on STD. 

 
 

 

Figure 7. Variance was calculated among all observers and 
classified according to spatial frequency. 

 

Figure 8. Variance was averaged among all observers and 
classified according to chroma 

3.2 Principle Components Analysis 
To address the question of finding the color space that 

best separates luminance and chrominance information, the 
data distribution in three dimensions (such as CIE XYZ) 
must be examined. Figures 9a and 9b illustrate that all data 
vary more along the X and Z dimensions, but much less 

along the Y dimension. From the figures one can see that 
most of the data variation is orthogonal, or nearly orthogonal 
to Y. This immediately suggests that the CIE 1931 Y 
dimension is a reasonable predictor of perceived luminance 
for this application. 

 

 

Figure 9a. Data in XYZ space. Data shown here are final XYZ of 
the adjustment end averaged among all observers and four 
repetitions. 

 

 

Figure 9b. Data projected onto X-Y (left) and Z-Y (right) plane. 

 
 
Figure 10 shows the data visualized in another way with 

each line drawn between the fixed end (left) and the observer 
adjustment end (right). Each row has the same luminance. 
Each column has the same color-vectors but with two levels 
of chroma. The short line represents low chroma pairs and 
the long line represents high chroma pairs. For each subplot 
there are six combinations of two chroma levels and three 
frequencies. It is assumed that when the perceived luminance 
of the two ends (and every point between) is equal, the 
chromatic noise will be least perceptible. As expected, the 
CIE luminance of the two ends is similar. It is interesting to 
note that for higher luminance (bottom row Figure 10), the 
scatter is larger than that for lower luminance.  

The standard deviation ranges among all observers for 
each subplot are shown in Table 1. Table 1 illustrates that for 
high luminance levels, the variance is larger, while for low 
luminance levels, the variance is smaller. In all cases, the 
CIE Y differences between the end-points are of the same 
order as, or smaller than the standard deviation between 
observers. 
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A statistical T-test was applied to determine if there 
were significant difference between CIE Y value of the 
adjusted endpoint and the Y value of the anchor point. From 
the test 41 out of the 72 stimuli showed a significant 
difference between the CIE Y of the two end-points.  
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Figure 10. The x-axis of each subplot indicates fixed end and 
adjustment end as shown on the left corner plot. The blue and 
cyan lines represent stimuli with frequency centered at 1 cpd, the 
green and magenta line centered at 4 cpd, and the red, yellow line 
for white noise. Short or long lines are used to distinguish low or 
high chroma respectively. 

 

Table 1. Variance Range for Each Subplot in Figure 12 
Luminance 

Level 
 M-Y/G Y-B O-C R-G 

Min 0.01 0.01 0.01 0.02 Y=0.1 
Max 0.02 0.02 0.02 0.02 
Min 0.01 0.02 0.02 0.03 Y=0.29 
Max 0.03 0.03 0.03 0.03 
Min 0.03 0.03 0.04 0.04 Y=0.65 
Max 0.04 0.04 0.04 0.05 

 
 

Principle Components Analysis was applied on the data 
at each initial lightness values. The function pcacov.m in 
Matlab17 was used to perform PCA. The input to the PCA is 
the CIE XYZ values of the two endpoints for each 
luminance level. Equations 1.1, 1.2, 1.3 show the calculated 
transformations from XYZ into the three dimensions of the 
PCA space (for each initial luminance level). From the PCA 
we can see that the third dimension contributes near zero 
variance (see Table 2). Notice from Equations 1.1-1.3 that 
this dimension correlates very strongly with the CIE Y 
luminance channel. In Table 2, the small percentage value 
for the third dimension indicates that the input data varies 
much less in that dimension than the first two dimensions. 
The principle component matrices constitute a preliminary 
orthogonal color space, and give a good starting point for the 
creation of a new opponent color space specifically designed 

for image processing. The PCA space also allows for 
summary of the data to evaluate historical color spaces. 

 
For Y=0.1 

1

2

3

0.0249 0.0480 0.9985

0.9936 0.1114 0.0194 * (1.1)

0.1103 0.9926 0.0505

V X

V Y

ZV

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦

 

For Y=0.29 

1

2

3

0.0048 0.0196 0.9998

0.9983 0.0578 0.0059 * (1.2)

0.0579 0.9981 0.0193

V X
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For Y=0.65 

1

2

3

0.0279 0.0064 0.9996

0.9996 0.0018 0.0279 * (1.3)

0.0016 1.0000 0.0064
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

 

 

Table 2. Variance and Percent Variance Explained by 
Each Dimension from PCA 

Luminance 
Level 

V1 V2 V3 

Y=0.1 0.0059 
(95.51%) 

0.0003 
(4.26%) 

0 
(0.23%) 

Y=0.29 0.0425 
(94.53%) 

0.0024 
(5.42%) 

0 
(0.05%) 

Y=0.65 0.1267 
(92.75%) 

0.0099 
(7.21%) 

0 
(0.04%) 

 

3.3 Chromatic Noise Prediction  
As illustrative examples shown, the visibility of 

chromatic noise in the PCA space and other color spaces can 
be visualized. 

Various noise images used in the experiment with 
combinations of different frequency, luminance and chroma 
were transformed to CIE XYZ, and then to the PCA space 
and other opponent spaces. The PCA space defines optimal 
performance for this data-set, and other opponent color 
spaces can be compared to look for similar capabilities. 
Figure 11 gives examples of a noise image along the yellow-
blue vector expressed in individual channels of the PCA 
space, CIE XYZ, IPT, YCbCr and YIQ. Linear in luminance 
versions of each space were used. 

For this noise image, in the PCA (the first row) space, 
noise is barely present in the third dimension, and little noise 
is observed in the Y channel of CIE XYZ, YCbCr and YIQ 
spaces, while in the IPT space there is some noise apparent 
in the achromatic channel. This implies that IPT color space 
is not orthogonal with luminance and might be sub-optimal 
for chromatic noise evaluation, modeling and perceptibility 
prediction. The fact that noise varies in chromatic channels 
for different spaces indicates the color direction of the 
chromatic channels. For example, for this yellow-blue noise 
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image, in IPT space there is less noise observed in the P 
channel than that in the T channel, because the P channel is 
along red-green direction, and the T channel is along yellow-
blue direction, suggesting the most noise in this channel for 
this yellow-blue noise image. 

 
 
 

 
Original image 

    
3rd Dim                     1st Dim                       2nd Dim 

   
Y                              X                              Z 

   
I     P     T 

     
Y    Cb    Cr 

   
Y    I    Q 

Figure 11. The top is the original image. Stimulus information is 
u’v’ of 0.2108 and 0.5173 respectively, luminance level 0.1, and 
4cpd spatial frequency. The rest are the same image transformed 
into various color spaces. 
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Figure 12. Cross-talk of luminance noise into chromatic channels 
in various color spaces. 

 
 
Figure 12 illustrates cross-talk of luminance noise into 

chromatic channels in various color spaces. These images 
were created by making a neutral gray in sRGB and then 
converting that image into XYZ and then the PCA space. 
Noise was added to the third dimension of the PCA space 
and then converted back into XYZ. From there the image 
was converted to the various color spaces. Most noise is 
permuted to the luminance channel for all the spaces. There 
is noise "leakage" into the P channel of the IPT space, and 
all the channels of the YCbCr space, while slightly less into 
the I and Q channel of YIQ, and the T of IPT. This illustrates 
how the PCA space was optimized to serve as an orthogonal 
color space for chromatic noise prediction and modeling. 
Figure 12 also illustrates the limitations of using some of the 
other color spaces for predicting the visibility of chromatic 
noise since luminance noise leaks into the chromatic 
dimensions and vice versa. 

IS&T/SID Twelfth Color Imaging Conference

345



 

 

4. Conclusion 

A psychophysical experiment was performed to measure the 
visibility of chromatic noise. Observers minimized the 
visibility of noise patterns of various spatial frequencies, 
luminance levels, and hues. An orthogonal color space has 
been derived to describe these data using Principal 
Component Analysis. This space was used to examine 
historical opponent spaces by transforming various 
chromatic noise images into this PCA space and other 
opponent color spaces. The cross-talk of luminance noise 
into chromatic channels was also examined. These results 
will be used to optimize models of chromatic noise 
perception for digital imaging. More experiments are to be 
performed to measure the threshold and suprathreshold noise 
perception in the PCA color space. Comparisons will also be 
made with additional opponent color spaces. It is hoped that 
an optimal opponent color space for use in image quality 
metrics, image difference metrics, image compression, and 
other digital image processing can be created for use with an 
optimized set of CSFs. 
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