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Abstract

A Bayesian method of generating color correction matri-
ces for digital image sensors is presented. This method
was developed for sensors with poor colorimetric qual-
ity, and uses strong prior assumptions about object sur-
face reflectance functions to improve color correction ac-
curacy. These assumptions are expressed through linear
model constraints on surface reflectance coupled with a
Normal distribution over linear model weights. Results
obtained with simulations and real camera images are pre-
sented. The Bayesian method works well for highly non-
colorimetric sensors and has been used in industrial prac-
tice with good and stable results. For sensors with bet-
ter colorimetric properties, methods employing weaker as-
sumptions about surfaces can sometimes produce better re-
sults.

Introduction

Color correction, the process of transforming digital
color pixel values captured by an image sensor into
a colorimetric space (such as CIE XYZ space), is al-
most required in today’s digital camera image process-
ing pipeline. Color correction is especially important for
highly non-colorimetric sensors, whose spectral sensitivi-
ties are poorly approximated by any linear transformation
of the human color matching functions.

The general formulation for the color correction prob-
lem has been provided by many earlier papers [1, 2, 3, 4, 5]
and we begin with a brief review. We assume that the
spectrum arriving at the camera is formed when an illu-
minant reflects from a surface. We represent the object
surface reflectance with a column vector R which has n el-
ements corresponding to the object’s reflectance in n sam-
ple wavelength intervals. Similarly, we represent the illu-
minant spectral power distribution with a column vector
E, also of length n. The entries of this vector are illumi-
nant power in each wavelength interval. For a camera with
3-sensor classes, camera spectral sensitivity is represented
by an n� 3 matrix S whose entries provide the sensitivity
of each sensor class to light in each wavelength interval.

The human color matching functions are also represented
by an n�3 matrix M, whose entries provide the values of
each color matching function. In this paper we will use the
CIE XYZ color matching functions, but our results may
be generalized to any choice of the matrix M. For an ob-
ject R illuminated with E the camera responses C may be
represented by a column vector of length 3 obtained as:

C � StD�E�R� (1)

where the function D�E� is a diagonal matrix with the illu-
minant spectral power distribution along the diagonal. To
arrive at Equation 1 we assume a camera with sensors that
respond linearly to light. This assumption often holds well
for real cameras, and when it fails a simple correction may
usually be applied to obtain linearized camera responses
[6].

For the same object, the colorimetric tristimulus values
XYZ, represented as a 3-vector X , are obtained as:

X � MtD�E�R� (2)

The goal of color correction is to recover the colori-
metric values X from the camera responses C. Note that if
the camera sensitivities S are a linear transformation of the
human color matching functions M, then color correction
is trivial [1]. In this special case, we can write:

S � MT� (3)

where T is a 3�3 matrix. The colorimetric XYZ values X
are then easily related to the sensor response values C:

C � �MT �tD�E�R

� Tt�MtD�E�R�

� TtX �

X � �Tt��1C� (4)

We refer to camera sensors that satisfy Equation 3 as
colorimetric sensors. In practice, camera sensitivities are
never exactly colorimetric. When the deviations are small,
the transformation matrix T that provides the best least-
squares solution to Equation 3 may be determined and used
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as in Equation 4. This method of color correction has been
referred to as the Maximum ignorance method, because
it makes no explicit assumptions about the scene surfaces
and illuminants [4]. As the sensors deviate from colorimet-
ric, however, this approach may not produce good results
(see Results section). Thus it is desirable to develop color
correction methods that work better for non-colorimetric
sensors. Such methods typically operate by using prior
information about what surfaces and illuminants actually
occur in the scenes being imaged. Here we will focus on
linear color correction methods that have the same (or al-
most the same) form as 4 but where different criteria are
used to choose the correction matrix. We also focus on the
special case where the illuminant spectrum E is known up
to a single scale factor k that describes the overall intensity
of the illumination.1

We follow earlier work by using linear color-correction
and assuming that surfaces are described by low dimen-
sional linear models [2, 7, 3]. We extend the earlier
work by using linear model ideas to develop an explicit
prior probability distribution over the space of surface re-
flectance functions that might appear in the scene. Using
a prior distribution of this form allows us to employ Bayes
rule to guide the choice of correction matrix.

By treating color correction under the assumption that
the relative spectrum of the illuminant is known, we sep-
arate the problem of color correction from the problem of
color balancing. Color balancing refers to correcting the
colors in an image for variation in the illumination under
which the image was aquired. At the heart of the color
balancing problem is the task of using the image data to
estimate, either explicitly or implicitly, the spectrum of the
illuminant. Algorithms for illuminant estimation and color
balancing are available elsewhere (e.g. [8, 9, 10, 11]). The
Bayesian color correction method we present here is not
by itself a color balancing method.

Bayesian Color Correction

A Bayesian color correction method uses prior knowledge
of the distribution of object surface colors in combination
with the camera data to make a best estimate of the ac-
tual surface reflectances in the scene. It then uses these
estimates for color correction by synthesizing the colori-
metric tristimulus coordinates corresponding to these sur-
faces. The mathematical formulation used here is similar
to that used by Brainard [12] for the demosaicing prob-
lem. For application to color correction, this formulation

1The factor k describes uncertainty in the illumination intensity at the
image plane, thus it also includes the uncertainty in overall sensitivity
of the camera sensors that arises with variation in f-stop and exposure
duration. We do not explicitly represent the factor k in the formulation
in this paper, as it can be shown that its value has no effect on the color
correction matrices we derive.

is coupled with a prior over surface reflectances developed
by Brainard and Freeman [10] in the context of the illu-
mination estimation problem. This prior assumes a linear
model for surface reflectance functions [13, 14, 15, 7] and
adds to this the assumption that a multivariate Gaussian
distribution describes the distribution of weights on the ba-
sis functions of the linear model.

The linear model assumption for surface reflectances
is that any surface reflectance function R in the scene can
be expressed as a linear combination of a set of m surface
basis functions B:

R � BW� (5)

where B is an n-by-m matrix, with each column represent-
ing one surface basis function and W is a vector of length m
representing the weights for each basis function. Such sur-
face basis functions can be obtained by applying principle
components analysis (PCA) on ensembles of reflectance
spectra that are representative of the surfaces likely to be
imaged [13, 14, 15, 7].

Suppose that the surfaces in the scene are well approx-
imated by a linear model of dimension 3. Then we can
derive

C � StD�E�BW

W � �StD�E�B��1C

X � �Mt D�E�B��StD�E�B��1C� (6)

Equation 6 provides a method of color correction that will
work for arbitrary 3-color camera sensors as long as the 3
dimensional linear model constraint holds exactly.

We evaluated the quality of surface linear models us-
ing measurements of surface reflectances made by Vrhel
[16]. For each surface Si out of the 170 Vrhel surface
measurements, we used the singular value decomposition
on the other 169 surfaces to obtain a set of m basis func-
tions with the m largest singular values. A linear combina-
tion of these basis functions were then found that best fit
(least mean squared error) the surface reflectance Si. Then
∆E94 error between the actual Si and the fitted surface re-
flectance, both assumed to be illuminated by D65, was cal-
culated. Figure 1 shows the average and maximum ∆E94

values over the 170 Vrhel surfaces evaluated in this way.
From these results we can say with some confidence that
the assumption in Equation 5 is reasonable as the num-
ber of basis functions m is chosen to be in the range 5-
8, consistent with conclusions drawn by previous authors
[13, 14, 15, 7]. When the number of basis functions de-
creases below 5, the quality of the approximation declines
considerably. It is thus of interest to consider whether it is
possible to develop methods that can incorporate informa-
tion from linear models with more than 3 basis functions.
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Figure 1: Color error when using various number of linear basis
functions to approximate surface reflectance functions from the
Vrhel set [16]. The ∆E94 values were calculated as described in
the text, assuming a D65 illuminant.

The approach we take to this is to employ Bayesian
methods. A Bayesian method always involves specifica-
tion of a prior distribution for the parameters to be esti-
mated, and a likelihood function for the data. The prior dis-
tribution expresses in a probabilistic fashion what is known
about the scene a priori, and in our hands is used to gen-
eralize the deterministic linear model constraint expressed
by Equation 5. The likelihood function expresses the im-
age formation model used in the analysis, and is made
probabilistic by incorporation of sensor noise. It is essen-
tially a generalization of Equation 1. Given the prior and
the likelihood, the Bayesian approach proceeds by com-
puting a posterior distribution as the product of the prior
and the likelihood [17, 18]. Here the posterior provides an
estimate of how likely any surface reflectance is, given the
camera sensor responses. From the posterior, a specific es-
timate of surface reflectance can be made. Here we choose
this estimate as the mean of the posterior.

To express a prior over surfaces, we begin with an m
dimensional linear model for surfaces. Within this model,
the free parameters are the weights W . We use a multi-
variate Normal distribution to describe the probability that
any given set of weights occurs in a surface in the scene
[10]. This prior distribution is represented by a mean vec-
tor µw (one number for each weight) and a covariance ma-
trix Kw:

P�W �� N�µw�Kw�� (7)

Figure 2 shows the empirical distribution of weights
for each basis function in a 6 dimensional linear model
for the Vrhel[16] surface reflectance functions. The fig-
ure also shows the marginal distributions of a Gaussian fit
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Figure 2: Histogram of weights for the first 6 surfaces basis func-
tions for the Vrhel set [16] (bars), with the marginals of the fitted
Gaussian distribution (dashed lines).

to the empirical distribution. The Gaussian fit was chosen
such that weights drawn from it matched the empirical dis-
tribution after removal of any weights that corresponded to
reflectance functions with negative values. Note that this
procedure differs from simply using the sample mean and
covariance matrix of the empirical distribution as the pa-
rameters of the Gaussian. The weight distributions for ba-
sis functions 2-6 are fairly well captured by the Gaussian
approximation, although the empirical distributions tend to
have broader tails than the Gaussian fits. The weight distri-
bution for the first basis function is not-well described by
the best-fit Gaussian. This is because our fitting procedure
incorporates in a heuristic manner the fact that real surface
reflectance functions are non-negative.

To express a likelihood, we start with Equation 6 and
write the camera responses C as a function of the linear
model weights W :

C � TcW (8)

where Tc � StD�E�B.
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Camera responses are noisy. Here we assume indepen-
dent additive Gaussian noise ε with a mean vector of 0 and
a diagonal covariance matrix Ke:

ε � N�0�Ke�� (9)

Therefore the likelihood model for the observed camera
data C � �TcW � ε�, is:

P�CjW �� N�TcW�Ke�� (10)

The prior distribution and camera data likelihood function
lead directly to the posterior distribution of the surface ba-
sis weights given the camera data through Bayes rule:

P�W jC� � P�CjW ��P�W��P�C�

� N�TcW�Ke�N�µw�Kw�� (11)

The posterior distribution in the form above is Normal with
mean vector µ1 and covariance matrix K1 [18, 12]:

µ1 � IC� i0� (12)

K1 � �K�1
w �Tt

c K�1
e Tc�

�1� (13)

I � KwTc�TcKwTt
c �Ke�

�1� (14)

i0 � �µw� ITcµw�� (15)

The minimum mean square error estimator for W is the
posterior mean Ŵ (which is the same as the MAP estimator
in the case of a Normal posterior):

Ŵ � µ1 � IC��µw� ITcµw�� (16)

The estimated surface weights Ŵ allow us to color correct
the camera responses by synthesizing the XYZ values :

X̂ � �Mt D�E�B�Ŵ

� TxŴ

� Tx�IC� i0�

� �TxI�C��Txi0�� (17)

The matrix Tx � �MtD�E�B� is 3-by-m. For a 3-color sen-
sor, the matrix I is m-by-3, and i0 is m-by-1. Thus the
Bayesian color correction process includes a 3-by-3 trans-
formation �TxI� of the camera RGB data, plus a 1-by-3
offset term �Txi0�. For most sensors, the offset terms are
very small, and thus negligible when compared to the ma-
trix terms. We include the offset term in the evaluations in
the Results section. In practice, the offset term can almost
always be ignored with negligible effect on the results.

Results and Discussion

When the surfaces in the scene are drawn according to the
prior distribution and when the sensor noise matches that
used for the likelihood function, the Bayesian method de-
scribed above is optimal in the sense that it minimizes the
expected mean squared error in the estimation of the sur-
face weights. For the application to color correction, sev-
eral factors can prevent the method from performing op-
timally. First, it is clear that the distribution of surface
reflectance weights is only approximated by a Gaussian.
Second, sensor noise may not be additive and Gaussian.
Finally, our interest in practice is not in minimizing the
estimation error for the surface weights, but rather in min-
imizing the perceptual error of the estimated tristimulus
values. Here we evaluate this perceptual error using the
∆E94 [19] metric. Since this metric is a non-linear trans-
formation of the difference between estimated and desired
tristimulus values, using the posterior mean is not guar-
anteed to minimize its expected value. It is therefore of
interest to evaluate the efficacy of the Bayesian algorithm
for conditions of interest, and to compare its performance
to that of other available color correction algorithms.

Evaluation by simulation: Method

We begin with simulations. We used the Vrhel surface re-
flectance measurements [16] and spectral sensitivity func-
tions of a number of image sensors with different colori-
metric qualities, as measured by their different Vora values
[20]. For each sensor, 3-color responses C to the Vrhel
object surfaces, illuminated by a chosen illuminant, were
calculated according to Equation 1. No noise was added to
the simulated sensor responses.

To calculate Bayesian color correction results, we pick
one surface as the target at a time, and use the remaining
169 surfaces from the Vrhel set to calculate surface ba-
sis functions and Gaussian prior over the surface weights.
A color correction matrix and an offset term were calcu-
lated as in Equation 17, and the camera responses C were
corrected to XYZ values accordingly for this surface. The
noise level was assumed to be 0. The “true” XYZ val-
ues for this surface were calculated according to Equation
2. CIE ∆E94 color difference values were then calculated
between the XYZ values estimated from the camera re-
sponses and the “true” XYZ values. This process was it-
erated, until we had color correction errors for all 170 sur-
faces. We also looked at the effect of estimating more than
3 weights by varying the number of surface basis functions
(3 to 10) in the Bayesian color correction process.

In addition to the Bayesian color correction method,
we also calculated color reproduction errors for several
other methods. In order of increasingly strong assump-
tions made about object surfaces, the methods evaluated
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were:

1. Maximum ignorance method (simple pseudo-
inverse method which finds matrix to minimize
mean squared error on the camera spectral sensitiv-
ity multiplied with the scene illuminant).

2. Maximum ignorance with positivity assumption [4].

3. Minimal knowledge [5] with α values varying from
30 to 700.

4. Basic linear model correction assuming 3 surface
basis functions (Equation 6).

For the various methods, the estimated XYZ coordinates
occasionally contained small negative values. Such values
were truncated to 0 before computing the ∆E94 error.

Evaluation by simulation: Single illuminant

Figure 3 shows results from two CMOS imager sensors
with different colorimetric properties, as measured by their
Vora values of 0.9 and 0.76. The results for the Basic linear
model correction with 3 basis functions (Equation 6) were
not measurably different from the Bayesian method imple-
mented with 3 basis functions and are not shown explicitly
in the figure.

For the sensor with better colorimetric quality (top
plot), color correction results from most methods produce
acceptable mean ∆E94. The basic linear method with 3 ba-
sis functions and the Bayesian method with 4 bases worked
best, but the Maximum ignorance with positivity constraint
method and the Minimal knowledge method (with α� 30)
also worked very well. The stronger surface prior used in
the Bayesian method did not make it perform better here.
This is perhaps to be expected for this sensor, as when
the sensor is close to colorimetric, strong prior knowledge
about assumed for object surfaces should not be necessary
for good performance.

An interesting features of Figure 3 is that the mean
∆E94 errors do not decrease as the number of basis func-
tions used in the Bayesian method increases. This is
not surprising, as the Bayesian method minimizes mean
squared error on the estimated weights of surface basis
functions for each surface color – which indeed decreases
as number of basis functions increases in this case, but
such a decrease does not always translate to a decrease in
∆E94 values. In general we find that the optimal number of
basis functions to use with the Bayesian method depends
on the sensor spectral sensitivity and the scene illuminant.

The bottom plot of Figure 3 shows results for a sensor
with poor colorimetric quality (Vora value = 0.76). Here,
the stronger assumptions about scene surfaces embodied
by the Bayesian method provide a larger benefit. With
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Figure 3: Color correction results for two sensors with different
colorimetric qualities, with D65 as the illuminant.

the Bayesian color correction, mean ∆E94 values are lower
than for any of the other methods. Methods embodying
weak assumptions generally performed worse than meth-
ods embodying stronger assumptions for this sensor.

Evaluation by simulation: Many sensors and illumi-
nants

In the previous section we evaluated color correction
method for a single choice of scene illuminant and two sen-
sors. We performed the same simulation for a large num-
ber of color sensors and different choices of scene illumi-
nant. A total of 257 sensor spectra were generated by com-
bining spectral sensitivity measurements from 27 imagers
with 11 infra-red filters (4 of the 27 imagers have built-
in IR filters, thus the total number of combinations is less
than 27�11). Four different illuminants (D65, cool white
fluorescent, 2277K and 2848K blackbody) were used, giv-
ing a total of 1028 sensor/illuminant combinations. The
Vora values, which meausure the colorimetric quality of
each sensor, were calculated and the sensors were classi-
fied into 10 Vora-value bins. For the Minimal knowledge
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method, the alpha value was chosen separately for each
sensor/illuminant combination to minimize mean error for
that combination. The number of basis functions used for
the Bayesian method was set between 4 and 10 for each
sensor/illuminant combination, with the setting chosen to
minimize mean error. As noted previously, linear model
and Bayesian correction with three bases perform similarly
in the noise free case of our simulations.
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Figure 4: Color correction results for different sensor/IR-
filter/illuminant combinations as a function of the sensors’ Vora
values[20], which measure their colorimetric quality.

Figure 4 shows the mean ∆E94 values for the 170 Vrhel
surfaces, averaged over multiple sensor/illuminant combi-
nations, as a function of the sensors’ Vora values. The
Bayesian model performs best on average. More generally,
we see that methods which make stronger prior assump-
tions (Minimal knowledge, linear model with 3 bases, and
Bayesian) perform better, and that the difference between
these methods is small. The improvement of methods with
strong assumptions versus methods with weak assump-
tions is largest when the colorimetric quality of the sen-
sors is poor. The standard deviations of the error values
are generally about 30-50so there is considerable variabil-
ity in terms of which method is most optimal for different
sensor/illuminant combinations.

Evaluation using data captured from a real camera

To check the accuracy of the color balancing process with
real camera data, an image of a Macbeth color checker was

Table 1: Color correction results for 24 Gretag Macbeth color
checker patches, from an image of the color checker taken with a
Kodak DCS-460 camera under outdoor daylight.

Method Mean ∆E94 95th percentile ∆E94

Max ignorance 5.47 15.5
Positivity 3.48 8.8
Min knowledge ) 3.26 7.6
Linear 3 bases 3.61 8.4
Bayesian 3.14 7.2

taken using a Kodak DCS-460 digital camera. Scene illu-
minant was measured using a PhotoResearch PR650 spec-
troradiometer. For each color patch of the color checker,
a 12 by 10 pixel area was selected from the image, and
raw RGB values (before demosaicing) were extracted. For
the Bayer mosaic pattern used in the Kodak DCS camera,
this corresponded to 60 green values, 30 red values, and
30 blue values per color patch. These raw values were
first linearized, using the built-in gamma table of the DCS
camera, to yield linear raw RGB values ranging from 0 to
5445. From these values we calculated the mean camera
responses (red, green, and blue) for each color patch. They
were used to estimate XYZ values of the color patches and
then compare to the “true” XYZ values of them calculated
from measured surface reflectance functions of the mac-
beth color checkers and the measured scene illuminant.

We again calculated color correction matrices using 5
methods: Maximum ignorance, Maximum ignorance with
positivity constraint [4], Minimal knowledge [5], Basic 3-
bases linear model [2, 7, 3], and Bayesian. For the Minimal
knowledge method, we calculated the color matrix using a
number of different α values and found that α � 14 gave
the best performance (lowest mean ∆E94 over the 24 Mac-
beth surfaces) for this sensor and this set of surfaces, thus
only the α � 14 results will be shown. For the Bayesian
method, we used 6 basis functions and chose a noise stan-
dard deviation used to compute the estimator to minimize
the error. This standard deviation corresponded to 8.6 dig-
ital values out of the linear camera response range 0-5445.
The measured scene illuminant, an outdoor daylight illu-
minant with a correlated color temperature of 5350K, was
used as the illuminant in all color matrix calculations.

Once the color correction matrices were calculated, the
XYZ values were estimated from the camera mean RGB
values for each of the Macbeth surface. Here the free over-
all scale factor was determined so that the average lumi-
nance of all 24 color checker patches matched between
the color-corrected values and the “true” values. After
the scales were matched, ∆E94 values were calculated be-
tween the color-corrected XYZ values and “true” XYZ
values, using the XYZ value of the measured scene illu-
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minant as the white point. Table 1 gives the mean and
95th percentile ∆E94 errors over the 24 Macbeth surfaces
for each method. The Maximum ignorance method had
the largest color errors. Adding the positivity constraint
[4] improved color accuracy considerably. The Minimal
knowledge method [5] with an optimal α improved accu-
racy further. The Basic linear model method gave perfor-
mance similar to that of the Maximum ignorance with pos-
itivity constraint method. The Bayesian method gave the
best results. Overall, the results with a real captured image
of known surfaces confirmed the evaluation provided by
the simulations.

Our results indicate that given our current state of un-
derstanding, choosing a preferred color correction method
requires a fair amount of engineering judgment, as trade-
offs must be made about robustness with respect to sensor
spectral sensitivities and the range of scene conditions that
will be encountered. In general, we have found it useful to
test all the above methods for a new sensor, and pick the
method which gives the smallest error in simulations for
the most likely illuminants. For highly non-colorimetric
sensors, we have obtained good results in practice using
the Bayesian method presented here. For both the mini-
mal knowledge and Bayesian methods, it is important to
optimize the algorithm’s parameters for the sensor spec-
tral sensitivities, sensor noise level, and scene illuminants
likely to be encountered. As an implementation detail,
note that color correction matrices for use in real cameras
may be precomputed, so that the complexity of the compu-
tations required to generate such matrices is not problem-
atic.

The work reported here suggests interesting future di-
rections. These include developing and using more accu-
rate priors for naturally occurring surfaces, extending the
method to incorporate a perceptual error metric such as
∆E94, and integrating color correction with illuminant es-
timation to improve robustness across different scene illu-
minations.

Summary

We presented a Bayesian method to calculation color cor-
rection matrices for non-colorimetric sensors, and com-
pared its performance to several well-known color correc-
tion methods. These methods make different levels of as-
sumptions about the statistics of the object surfaces to be
measured. The Bayesian method, which makes strong as-
sumptions about object surfaces, performed very well, par-
ticularly for highly non-colorimetric sensors.
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