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Abstract

Spectral characterization is often performed based on the set
of measured spectral color signals and corresponding scalar
sensor responses. Most methods attempt to reconstruct the
sensor sensitivities at a discrete set of specific wavelengths
or as a linear combination of basis functions. This paper de-
scribes a general method for estimating spectra using a di-
rect regression of the discrete data with a continuous function
by means of nonlinear optimization of its parameters. A pri-
ori information such as positivity and smoothness constraints
and other assumed physical properties of the sensor are in-
corporated in the estimation process by an appropriate choice
of the function. Results are provided for a simple neural net-
work approximator which can be used for modeling of a wide
variety of spectral functions. The proposed method is com-
pared with quadratic programming, pseudoinverse, principal
eigenvectors, and direct physical measurements.

Introduction

Spectral characterization attempts to estimate sensor sensitiv-
ity using sensor responses to known spectral color signals and
additional a priori information. It is an active field of research
and there are many published methods: pseudoinverse and
principal eigenvector methods [1], SVD with Tikhonov reg-
ularization [2], Wiener estimation [3], projection onto con-
vex sets [1], linear programming [4], and quadratic program-
ming [5, 6]. These methods try to directly reconstruct the sen-
sitivity spectra as sets of unrelated values for specific wave-
lengths or linear combinations of basis functions.

Alternatively, a predetermined parameterized nonlinear
function can be regressed directly to pairs of reflectance spec-
tra and sensor responses. Skewed and kurtosed Gaussian
functions used in [7] can work well for CCD sensitivities but
are less appropriate for estimation of illuminants or total scan-
ner response. In the general case, minimizing a regression er-
ror function requires use of nonlinear optimization methods.
In this paper a general analytical method for computation of
the error function gradient is presented. It allows efficient use
of an arbitrary continuous function to approximate the rela-
tionship between a wavelength and a response such as sensor
sensitivity or illuminant spectral power distribution (SPD). A
non-parametric model such as a neural network does not re-

quire a priori assumptions about a specific functional form of
the spectral sensitivity.

The Characterization Approach

An approximation of sensor response t̂i to spectral reflectance
ri(λ) of the test patch i can be modeled as

t̂i(w) =
∫ ∞

−∞
m(λ, w)ri(λ)dλ (1)

where m(λ, w) is a continuous function of the wavelength λ
characterized by a vector of p parameters w = [w1, . . . , wp].
In this formulation it is assumed that the illuminant is not
known a priori and m incorporates effects of the illuminant,
filter transmittance, and detector sensitivity. However, this
equation can be also applied when an illuminant is known by
pre-multiplying ri(λ) by the spectral power distribution of
this illuminant.

We propose a method for estimating m by direct fitting
to experimental data. First we define the estimation error for
patch i

ei(w) = t̂i(w) − ti

where ti is the actual (possibly linearized) sensor response
for patch i. The total error function is expressed as a sum of
squares of the individual patch errors:

E(w) =
1
2

∑
i

e2
i (w).

The parameters producing the best least-squares fit of the
function to the sensitivity of the sensor are obtained by mini-
mizing the error criterion:

w∗ = arg min
w

E(w). (2)

Additional a priori requirements are most easily accommo-
dated by choosing a specific functional form for m. If ad-
ditional constraints are needed they can be added to Equa-
tion (2) as additional error penalty terms or as constraints to
form a nonlinear programming problem. Figure 1 shows the
simplified diagram of the estimation process.

The best-fit parameters w can be found using any nonlin-
ear optimization algorithm. One of the simplest is gradient
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Figure 1. Block diagram of the iterative optimization process. 
 
 
descent, where the parameters w are iteratively modified by a 
fraction α of the negative gradient of the error function until 
a proximity of the minimum is reached: 
 

 
 
This paper employs a more advanced second-order algorithm 
known as Scaled Conjugate Gradient [8] which significantly 
improves the speed and convergence of optimization. 

The error gradient is a vector of partial derivatives of the 
error function with respect to each of the parameters wk: 
 

 
 
Components of the gradient can be computed from the chain 
rule: 
 

     (3) 
 
without resorting to finite-difference approximations. 

In practice, the measurements of test patch reflectances 
are done at a limited and discrete set of wavelengths [9], for 
example, at 31 points from 400 nm to 700 nm with 10 nm 
spacing. Then the integrals in Equations (1) and (3) can be 
replaced with sums: 

 

and 
 

 
 

In a trivial case, function m can be just a lookup table 
with each of the parameters wλ simply storing the response 
for a wavelength λ: 
 

 
where 

 
 
Then, from Equation (3), the derivative 
 

 
 
and, from Equation (1), 
 

 
In vector notation: 
 

 
 
where t is a column vector of sensor responses for each test 
patch and R is a matrix with each row describing the spectral 
reflectance of each patch. The optimization problem from 
Equation (2) then becomes 
 

   (4) 
 
Equation (4) can be solved in the least squares sense without 
resorting to nonlinear optimization algorithms by the well-
known pseudoinverse (PI) method [1] 
 

        (5) 
 
where symbol † denotes Moore-Penrose matrix inverse. This 
shows that for a specific formulation of m our method is 
identical to the pseudoinverse algorithm. 

The matrix of real-object reflectance spectra R is highly  
ill-conditioned and contains only seven to eight significant 
singular values [10]. Its pseudoinverse is very sensitive to 
noise. This motivates the principal eigenvectors (PE)  
algorithm, also known as rank-deficient pseudoinverse [1]. It 
retains only the eigenvectors corresponding to the n largest 
singular values from the SVD decomposition of matrix R. The 
pseudoinverse is a special case of the principal eigenvectors 
method where all 31 eigenvectors (for the case of 31 spectrum 
samples) are employed. Unfortunately, PE is still very 
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vulnerable to noise while giving worse results than PI for low
noise data. These problems manifest themselves with unde-
sired features such as negative and discontinuous sensitivities
for some wavelengths.

Most of these problems can be avoided by adding ad-
ditional constraints on the pseudoinverse solution ([4, 5]).
Quadratic programming allows solving of Equation (5) in the
least squares sense subject to conditions enforcing smooth-
ness and positivity of the result. In our experiments we used
QLD algorithm [11] with smoothness constraint

|1/4 wi−1 − 1/2 wi + 1/4 wi+1| < ε.

The results are labeled with symbol QP. We also used QP

with the additional positivity and boundedness constraint of
the form 0 ≤ wi ≤ 1 and labeled the results as QP+. An-
other way of enforcing smoothness is by adding a weighted
regularization term to the error function [6].

There is usually no need to evaluate the resulting func-
tion at wavelengths not present in the initial measurement set.
Any continuous function passing through the same points will
produce identical results when used in the approximate dis-
crete spectral calculations. The quality of the interpolation
between these wavelengths is related to the generalization ca-
pabilities of the curve family employed.

Spectral sensitivity estimation is usually done indepen-
dently for each channel unless there is a priori knowledge that
the sensor signals are not actually independent. In a common
case, when an internal 3 × 3 matrix is used to improve color
fidelity of the device, a vector-valued function m with three-
dimensional values (for example a neural network with an ad-
ditional layer having three linear outputs) could be employed
to separate the signals simultaneously while estimating the
sensitivities.

Results

Publication IEC 61966-8 [4] is an international standard con-
cerned with calibration and evaluation of scanners. It recom-
mends a linear programming method to estimate the scanner
sensor sensitivities using scans and spectral measurements of
a test chart shown in Figure 2 containing a wide range of
spectral reflectances from a population of relatively pure real
print colorants (Figure 3). Singular value analysis indicates
that spectra of this chart have higher intrinsic dimensionality
than GretagMacbeth’s ColorChecker, justifying a model with
more parameters.

A series of experiments compared the proposed method
with other approaches. As an approximating function we
chose a simple single input (wavelength), a single hidden
layer with Nh neurons, and a single-output (sensor response)
neural network. The explicit functional form was:

m(λ, w) =
1
2
(
1+tanh

[
w1+

Nh∑
h=1

wtp tanh(wp+λwpλ)
])

.

Figure 2: IEC 61966-8 test chart.
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Figure 3: Reflectance spectra of the 88 most chromatic patches from
the IEC 61966-8 chart (rows A, D, G, and J).

The resulting function is nonlinear with respect to all its pa-
rameters. Since the tanh(·) function range is [−1, 1], the out-
put of m is limited to [0, 1]. It provides a simple way of en-
forcing both the positivity and limited amplitude constraints
though it may require pre-scaling the data to make sure that
no valid sensitivities are larger than 1.

The estimation process is started either with random ini-
tial parameters w(0) or, if a good initial sensitivity curve
form is known, with a set of parameters corresponding to this
curve.

Our first experiment attempted to estimate the CIE color
matching functions (Figure 4a) from the spectral measure-
ments of the IEC 61966-8 chart and the corresponding ideal
computed XYZ values with varying levels of Gaussian noise.
Synthetic data allows full control over the noise. Spectral
measurements were pre-multiplied by the known power dis-
tribution of illuminant D50. RMS errors in estimates from
neural networks with 20 hidden neurons (model NN(20)) are
compared to pseudoinverse (PI and PI+), quadratic program-
ming (QP and QP+), and PE with 7 most significant singular
values (Figure 4b). The RMS errors in PE results approach
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Figure 4: Estimation of CIE color matching functions: a. target; b. RMS of estimates for varying levels of Gaussian noise added to XYZ

values. Estimates for 20 dB SNR Gaussian noise: c. PI; d. PI+; e. QP; f. QP+; g. PE(7); h. NN(25).

IS&T/SID Twelfth Color Imaging Conference

305



zero as the number of singular values approaches the number
of spectrum samples, but these solutions have infeasible spec-
tral responses (Figure 4c,e). RMS results for neural networks
are competitive with pseudoinverse, with spectral responses
(Figure 4h) that agreeably approximate their targets.

A second experiment estimated the power distribution of
illuminant D50 from reflectance spectra pre-multiplied with
the CIE color matching function. The relative power distri-
bution (CIE standard specifies illuminants in terms of an ar-
bitrary unit of radiant power [12]) was scaled to the [0, 1]
range as shown in Figure 5a. The assumed sensor outputs ti
were XYZ values with Gaussian noise. Results (Figure 5b–f)
demonstrate that despite low RMS values, sharp spikes in the
illuminant SPD are difficult to reproduce. Likely reasons are
that the IEC chart reflectances do not have sufficiently sharp
transitions and that the added noise forces the least squares
fit to find a middle, smooth approximation. Figure 6 shows
estimation results obtained for illuminant F11 which is rep-
resentative of tri-phosphor fluorescent lamps commonly used
in desktop scanners.

Additional experiments were performed using spectral
data measured for each patch of the IEC-61966-8 chart and
the corresponding averages of RGB values from an image ob-
tained with an Avision AV810C desktop scanner. The diffi-
culty of direct measurements was actually one of the moti-
vations for spectral reconstruction approaches. Spectral sen-
sitivity capture was expedited by writing a custom applica-
tion which combined monochromator (Optometrics’ Scan-
ning Digital Variable Wavelength Fiber Optic Module) and
scanner driver control to handle repeated scans of a fiber
bundle output. Monochromator and scanner lamp were cali-
brated using Ocean Optics USB 2000 spectrometer. Marginal
signal-to-noise ratio for blue wavelengths is still a remaining
measurement challenge and leads to large errors in this part
of the spectrum.

Assuming that the sensor’s response based on its physical
properties should be proportional to the incident light, sensor
characterization should be preceded by linearization of its lu-
minance response. The achromatic patches at the bottom of
the IEC chart were used to develop appropriate fourth degree
polynomial fits.

Figure 7 compares measurements with estimates of ac-
tual scanner sensor responses combining sensor sensitivity,
filter transmittance, and recording illumination. Scanner sen-
sor spectral sensitivities were measured directly with nomi-
nal 2 nm resolution and lamp SPD was measured with nomi-
nal 0.2 nm resolution. Estimates were based on reflectances
with 20 nm bandwidths. Approximating lower resolution es-
timates by triangular filters yields roughly comparable re-
sults, allowing for quantizing artifacts.
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Figure 5: Estimation of CIE illuminant D50 power distribution:
a. QP+ and NN(25) estimates for 20 dB SNR Gaussian noise; b. RMS

of estimates for varying levels of Gaussian noise added to XYZ val-
ues.

Conclusions

Spectral device characterization rarely can replace empirical
characterization performed for specific media and scene il-
lumination but provides valuable insights into system design
issues such as filter quality factors and metamerism. Con-
sequently, it is interesting to contemplate robust approaches
which treat the capture process approximately as a black box
but still allow optimization of spectral design parameters.

Selecting an appropriate complexity for the approximat-
ing function is an important issue. Use of fewer parameters
results in smoother solutions but increases risk of systematic
bias resulting from the inability of the function to model the
underlying phenomenon. On the other hand, too many pa-
rameters cause the function to exhibit large variance in re-
sponse to irrelevant uncertainty and measurement noise, and
the generalization will suffer. (Variance of even very large
models can be controlled by means of regularization.) One
possible solution is to divide available data into three sets:
training, validation, and test. A whole range of estimates can
be computed for varying function complexity using only the
training set and one with the smallest error on the validation
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Figure 6: Estimation of CIE illuminant F11 power distribution:
a. QP+ and NN(25) estimates for 20 dB SNR Gaussian noise; b. RMS

of estimates for varying levels of Gaussian noise added to XYZ val-
ues.

set can be chosen. Finally, the withheld test set can be used to
obtain an unbiased measure of the actual performance of the
model.

While existing PI and PE methods are limited to linear
combinations of basis functions (reflectance matrix eigen-
vectors), our method uses arbitrary nonlinear functions and
seems more intuitive since it starts with the desired curve
family properties. Relaxing the linearity requirement ap-
pears to result in more robust color sensor characterizations
from spectral samples. The demonstrated neural network
model yields non-negative and continuous functions of wave-
length with a parameter vector for each tristimulus chan-
nel optimized based on a single error scalar summed over
10 nm wavelength intervals and IEC 61966-8 test chart sam-
ple patches.

One potential disadvantage of nonlinear optimization is
the possibility of finding only one of multiple local minima
in the estimation process. However, this did not seem to be a
problem in practice and can be avoided by using small models
and by varying the initial estimation parameters.
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Figure 7: Comparison of Avision AV810C scanner sensitivities.
Continuous line represents the measurements having approx. 0.2 nm
nominal resolution, dashed line is the result of subsampling of this
data to 10 nm, and the dotted line is an estimate obtained with model
NN(25).
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