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Abstract 

We propose a hybrid method to efficiently represent spectral 
BRDFs. We first perform Fourier transform to the spectrum 
for given incident and outgoing directions, and then 
decompose the Fourier coefficients into a smooth 
background and a sharp peak. The smooth background will 
be represented with a linear combination of spherical 
harmonics, and the sharp peak with a Gaussian function. The 
errors of representation are studied. This method has a 
potential of applications in color synthesis and analysis.  

1. Introduction 

In color image synthesis and analysis, a fundamental 
problem is to accurately characterize light scattering from 
objects. This behavior is generally described by a bi-
directional scattering distribution function (BSDF)1 
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which is the ratio between the scattered radiance and 
incident irradiance, where ( , )i iθ ϕ  and ( , )o oθ ϕ  specify the 
incident (lighting) and outgoing (viewing) directions (Figure 
1), and λ  is wavelength. In case of reflection and 
transmission at a surface, a BSDF becomes respectively a bi-
directional reflection distribution function (BRDF) and bi-
directional transmission distribution function (BTDF). This 
paper focuses on BRDFs, but the proposed method is 
inherently applicable to BSDFs and BTDFs.  

A number of analytic studies2-8 have been conducted to 
model surface reflection behavior. However, the existing 
methods still need to improve in accuracy and generality. 
The key challenge roots in the tremendous complexity of 
surface reflection process. This process may involve not only 
the incident and outgoing directions, wavelength, and 
polarization, but also surface properties such as roughness 
and anisotropy, bulk material properties such as volume 
absorptivity, and multiple scattering.9  

Alternatively, one may obtain BRDFs from experi-
mental measurements or numerical simulations. A common 
strategy is to sample a BRDF in each dimension, including 
four angles and wavelength (or color components). 
However, this requires a huge data size in representation. 
Another strategy represents a BRDF directly with a linear 
combination of basis functions such as spherical 

harmonics10,13 and wavelets.13,15 However, when a BRDF has a 
sensitive dependency on directions, a large number of 
coefficients might be needed. Recently, a factored 
representation16-18 was proposed by factoring a BRDF into the 
product of low-dimensional functions. Following this idea, a 
method based on importance has also been developed to 
improve the storage efficiency of BRDFs.19 

 

 
Figure 1. The geometry and notations of surface scattering. 
 
 
These previous studies have focused on RGB-based 

BRDFs. However, it has been shown that the RGB-based 
approach is inadequate for faithful color imaging and that 
spectral information is necessary.20-23 For example, 
wavelength information is necessary for rendering light 
interference or diffraction. This motivates the current work.  

In the past,24 we proposed to represent spectral BRDFs 
by performing Fourier transform to the spectra of all incident 
and outgoing directions, and then express the same-order 
Fourier coefficients by a linear combination of spherical 
harmonics. However, that approach is still not efficient 
enough for those BRDFs that have a sensitive dependency 
on directions.  

In this paper, we propose a hybrid method to represent 
spectral BRDFs compactly. We first perform the Fourier 
transform to the spectrum for each combination of the 
incident and outgoing directions. Then, for each incident 
direction, we decompose the same-order Fourier coefficients 
of spectra into a smooth background and a sharp peak (which 
has a sensitive angular dependency). Since the smooth 
background is dominated by low-frequency components, we 
propose to represent the smooth background using a linear 
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combination of low-level spherical harmonics. On the other 
hand, the sharp peak contains significant high-frequency 
components and we represent it with a Gaussian function. 
We have conducted numerical studies of the representation 
errors using this hybrid method, and the results show that it 
has significantly improved the representation efficiency of 
spectral BRDFs.  

2. Representation of Spectral BRDFs 

2.1 Fourier Transform 
A BRDF function can generally be decomposed into the 

diffuse and specular components  
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Typically, the specular component has a lobe that 
depends sensitively on the outgoing direction and has the 
maximum at a specific direction. For convenience in this 
paper, we call this direction “mirror-reflection direction”, 
although the true mirror-reflection direction does not always 
generate the maximum (see Ref. [3]). In contrast, the diffuse 
component is insensitive to the outgoing direction. 

Furthermore, we assume that both diffuse and specular 
components could be expressed in terms of a product of an 
angle-dependent geometric factor and a wavelength-
dependent factor. That is,  
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The consideration here is that all physical surfaces can 
be classified into two categories. In the first category, a 
surface is a simple interface that separates the material from 
its environment, and the material is homogeneous across the 
surface. Common examples are metallic surfaces. In this 
case, since the wavelength dependencies of the diffuse and 
specular components are caused by the same material, the 
diffuse and specular colors are similar. In the second 
category, a physical surface consists of two or more layers. 
Examples include painted or varnished surfaces such as 
skins and automobiles. In this case, the specular component 
is mainly associated with the top layer, and the diffuse 
component involves both the top and sub-layers. Therefore, 
the diffuse and specular colors might be very different. A 
good example is painted wood furniture, where the specular 
color is white (the color of illuminating light) while the 
diffuse color is dominated by the color of wood.  

Given a spectral BRDF, we first perform a Fourier 
transform in the wavelength dimension: 
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Substituting Eq. (3) into (5), we can express the Fourier 
coefficients as 
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where ( , , , , ) ( )i i o o kλ ρ θ ϕ θ ϕ λ⎡ ⎤⎣ ⎦F  represents Fourier coefficients 
( , , , )k i i o oa θ ϕ θ ϕ  or ( , , , )k i i o ob θ ϕ θ ϕ . 

 

(a) 

 

(b) 

 

(c) 

Figure 2. Decomposition of spatial distribution of a Fourier 
coefficient (a) into a smooth background (b) and a sharp peak (c). 

 

2.2 Spherical Harmonics and Gaussian Function 
Since each Fourier coefficient is a bi-directional 

function that depends on the incident and outgoing 
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directions, we can express it using a linear combination of 
spherical harmonics. However, if we attempt to represent the 
Fourier coefficient directly using the spherical harmonics, 
the representation would not be efficient when the 
coefficient has a sensitive angular dependency, which is 
associated with the specular term. Based on this 
consideration, we propose to decompose the same-order 
Fourier coefficients into a smooth background and a super-
imposed sharp peak. Since the smooth background mainly 
contains low-frequency components, it can be represented 
well with a linear combination of low-level spherical 
harmonics. On the other hand, the sharp peak can be 
described by a Gaussian function conveniently. Figure 2 
illustrates this approach, where Fourier coefficients of the 
same order are decomposed into a smooth background and a 
sharp peak.  

Thus, continuing from Eq. (6),  
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where , ( , )l m o oY θ ϕ  is the spherical harmonic function of level l 
and order m, L  is the maximum level of spherical harmonics 
used for the representation, , ( , ) ( , )i ik l mA θ φ  are the coefficients, 
and kp  and kb  specify the height and width of the separated 
peak. Note that kα  is the angle between the outgoing 
direction ( oθ , oϕ ) and the mirror-reflection direction ( pθ , pϕ ) 
at which the peak is maximal. 

2.3 Decomposition of Fourier Coefficients 
Before decomposing the Fourier coefficients, we need to 

identify the mirror-reflection direction ( pθ , pϕ ). In principle, 
this direction can be determined using numerical calculation 
such as regression analysis.25 Considering that the specular 
part (the second term in Eq. (6)) near the mirror-reflection 
direction is remarkably larger than the diffuse part (the first 
term in Eq. (6)), we will use Gaussian function for the 
regression analysis. 

First, we consider the 1D case and a generic Gaussian 

 2( ) exp[ ]f A B Cα α α= + +  , (8) 

where A, B, and C are coefficients to be determined. Since  
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(2 )B Cα = −  gives the center of the peak. The regression 
analysis to determine the coefficients can be expressed as 
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This equation can be transformed into 
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The procedure is similar for 2D case, in which the 
outgoing directions ( , )o oθ ϕ  are regularly distributed. The 
algorithm for finding ( pθ , pϕ ) is summarized below:  
1. Find all outgoing directions ( , )o oθ ϕ  in which the BRDF 

values are remarkably larger than those of other 
outgoing directions. 

2. For each group of ( , )o oθ ϕ  with respect to each value of 
oθ , use the regression analysis in Eqs. (8-11) to find the 

center of the peak, and store it into array Y. 
3. For each group of ( , )o oθ ϕ  with respect to each value of 

oϕ , use the regression analysis Eqs. (8-11) to find the 
center of the peak, and store it into the array X. 

4. Calculate the average value in array X and set it as pθ , 
and then calculate the average value in array Y and set it 
as pϕ . 
 
The decomposition of the sharp peak from the smooth 

background is the key point for our hybrid representation 
method. For this purpose, we need to set a critical angle first. 
For any outgoing directions with angle from the mirror-
reflection direction larger than the critical angle, we will 
regard them as being part of the smooth background. Then 
we use the regression analysis to determine coefficients 

, ( , ) ( , )i ik l mA θ φ . The expressions are:  
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Eq. (12) can be transformed into a series of linear equations 
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where 0, 1, 2, ...,l L′ = , and l m l′ ′ ′− ≤ ≤ . Solving these linear 
equations in Eq. (13), the coefficients , ( , ) ( , )i ik l mA θ φ  can be 
obtained.  

Having obtained the coefficients , ( , ) ( , )i ik l mA θ φ , we can 
extract the smooth background first. Then we follow the 
regression analysis in Eqs. (8-11) to determine coefficients 

kp , kb  and kα . Since the mirror-reflection direction ( pθ , pϕ ) 
has been obtained, we can conveniently calculate the angle 
between any outgoing direction and the mirror-reflection 
direction.  

3. Numerical Studies 

To verify the efficiency and accuracy of our method, we 
apply it to representing BRDFs that are generated using the 
Phong illumination model4,26:  
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where I  is the reflected light intensity, 1I  is the light 
intensity of a point source, n  is positive integer (the Phong 
power), I

v
, N
v

 and R
v

 denote the directions of the incident 
light, surface normal, and reflected light, respectively, and 

dk  and sk  are the diffuse and specular coefficients. ( )dS λ  
and ( )sS λ  correspond to spectral reflectances for the diffuse 
and specular terms. In our numerical study, the spectra 

( )dS λ  and ( )sS λ  are taken from those of the Green and 
White in Macbeth Color Checkers1 (see Figure 3).  
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Figure 3. Spectra of Green (a) and White (b) in Macbeth Color 
Checkers. 

 
 
First, for the purpose of comparison, we represent the 

same-order Fourier coefficients directly using a linear 
combination of spherical harmonics without decomposing 
them into a smooth background and a sharp peak. For all the 
sampled outgoing directions, the total relative error between 
the representation and generated BRDFs versus s dk k  and 
the Phong power n  is shown in Figure 4. Here, the incident 
direction is 15iθ = , 0iϕ = , the maximum level of spherical 
harmonics is 4L = , and 13 Fourier coefficients  are used. 
(Below all Fourier transforms use 13 coefficients).  

Since we use the Phong model to generate spectral 
BRDFs, the relative height of peak to the smooth 
background in Fourier coefficients increases with the value 
of s dk k , and the width of peak decreases with n . Therefore, 
both increases in s dk k  and n  will result in the change of 
BRDF shape from being smooth to having a sharp peak. In 
Figure 4, we can see that, for a fixed Phong power n , the 
relative error increases with s dk k . However, for a fixed 

s dk k , the relative error decreases first, then increases 
quickly with n . This behavior is caused by the fact that we 
use the maximum level of spherical harmonics L = 4. Large 
L  increases the ability of linear combination of spherical 
harmonics to represent the functions with complicated 
geometrical shape, and a small change in geometrical shape 
from being smooth to spiky might match the configuration 
of spherical harmonics better. From Figure 4, for the large 

s dk k  and/or large n , it is clear that the representation is not 
sufficient. 

 

Figure 4. Representation error vs. s dk k  and n . 

 
 
The topological geometries of Fourier coefficients for 

0a , 1a , and 1b  are shown in Figure 5, where / 5s dk k =  and 
15n = . Note that each coefficient of the same-order in the 

Fourier transform depends on directions, and we can 
decompose it into a smooth background and a peak. The 
height of peak is much larger in Figure 5(a), comparable to 
the smooth background in Figure 5(b), and opposite to the 
sign of smooth background in Figure 5(c). We will represent 
the smooth background with a linear combination of low-
level spherical harmonics, and the sharp peak with a 
Gaussian function. 

Note that we do not know the optimal critical angle to 
decompose the smooth background from sharp peak. 
Therefore, we calculate the relationship of the relative error 
versus the critical angle first, and then determine the critical 
angle corresponding to the minimal relative error. Figure 6 
shows the relative error versus the critical angle. The 
incident direction is ( 15iθ = , 0iϕ = ) and the maximum level 
of spherical harmonics 1L = . 

In Figure 6, the minimum relative errors are lower than 
7% for all curves. For the same value of n , the critical angle 
for the minimum relative error does not change with the 
increase of s dk k . However, for the same value of s dk k , the 
error decreases with n . This is due to the fact that the 
increase in s dk k only leads to an increase in the height of the 
peak relative to the smooth background, and does not change 
the width of peak. Therefore, the critical angle does not 
change with s dk k . However, an increase in the Phong 
power causes a clear decrease of the width of the peak, and 
therefore the critical angle decreases with n .  
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(a) 

 
(b) 

 
(c) 

Figure 5. Geometry of Fourier coefficients, (a) for 0a , (b) for 1a , 

and (c) for 1b . 
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Figure 6. The relative errors of all the sampled outgoing 
directions vs. the critical angle. 

 
 
Figure 7 shows the comparison of the represented 

spectral BRDFs with the originally generated data for 
15s dk k =  (see Figure 4). Here, the critical angle is 37 

degrees, and the outgoing direction ( 15oθ = , 180oϕ = ) for 

Figure 7(a) gives the center position of the peak. The relative 
error is 0.048. The outgoing direction for Figure 7(b) is 
( 15oθ = , 135oϕ = ), and the relative error is 0.025. The 
outgoing direction for Figure 7(c) is ( 15oθ = , 90oϕ = ), and 
the relative error is 0.028. Finally, the outgoing direction for 
7(d) is ( 15oθ = , 0oϕ = ), and the relative error is 0.03. For all 
these outgoing directions, the reconstructed BRDFs using 
the parameters in our hybrid method agree well with the 
original BRDFs. 

 
 
 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

400 430 460 490 520 550 580 610 640 670 700

Wavelength (nm)

R
ef

le
ct

an
ce

raw data

representation

 
(a) 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

400 430 460 490 520 550 580 610 640 670 700

Wavelength (nm)

R
ef

le
ct

an
ce

raw data

representation

 
(b) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

400 430 460 490 520 550 580 610 640 670 700

Wavelength (nm)

R
ef

le
ct

an
ce

raw data

representation

 
(c) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

400 430 460 490 520 550 580 610 640 670 700

Wavelength (nm)

R
ef

le
ct

an
ce

raw data

representation

 
(d) 

Figure 7. Comparison of the original (raw) BRDF and the 
reconstructed one using the proposed hybrid representation for 
different outgoing directions. 

IS&T/SID Twelfth Color Imaging Conference

280



 

 

4. Conclusions 

We have proposed a hybrid method to optimize the 
representation efficiency of spectral BRDFs. This method 
first performs a Fourier transform in the wavelength 
dimension, and then decomposes the Fourier coefficients 
into a smooth background and a sharp peak. The smooth 
background is represented with a linear combination of 
spherical harmonics and the peak with a Gaussian function.  

We have studied the errors between the representation 
and the original spectral BRDFs (from the Phong model) 
versus a number of relevant parameters. Our results show 
that, for smooth spectral BRDFs, it is sufficient to represent 
spectral BRDFs directly using a linear combination of 
spherical harmonics up to level 4. However, for those 
spectral BRDFs with a sensitive dependency on the outgoing 
direction, it is important to decompose the Fourier 
coefficients into a smooth background and a sharp peak. The 
smooth background is represented with the linear 
combination of low-level spherical harmonics, and the sharp 
peak with a Gaussian function. Using the proposed hybrid 
method, a more compact representation is achieved.  

As future work, it is interesting to test the hybrid 
method using spectral BRDFs obtained from measurements 
or simulations. The key idea of decomposition of the smooth 
background and sharp peak in a function can be easily 
extended to the case with multiple peaks (for example, 
spectral BRDFs involving diffraction usually have multiple 
peaks2,27). Finally, the hybrid method will be useful for 
spectrally-based image synthesis and analysis, as well as for 
the long-term data storage of spectral BRDFs.  
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