
 

Spectral Colorimetry Using LabPQR – An 
Interim Connection Space 

Maxim Derhak*,† and Mitchell Rosen† 
*Onyx Graphics, Midvale, Utah, USA 

and †Rochester Institute of Technology,  Rochester, New York, USA 
 
 

Abstract 

A method of converting reflectance spectra to a convenient 
intermediate form introduced as LabPQR is used as an 
Interim Connection Space (ICS) within a spectral color 
management system. The LabPQR ICS makes use of a 
spectral encoding that explicitly incorporates colorimetry 
with additional dimensions that define spectral error 
corrections that allow an inverse transformation to 
approximate the original spectra. Consistent with a 
previously defined spectral color management 
transformation chain, the PQR dimensions of the ICS can be 
optimally formulated to suit any specific output device’s 
spectral characteristics. Several example transformations are 
demonstrated using various output devices with spectral 
gamut visualizations. Observations are made, and from these 
observations, a possible method of performing spectral 
gamut mapping is proposed. 

Introduction 

Color image reproduction systems have traditionally been 
based upon colorimetry which relies on the fact that there are 
only three cones in the human visual system. Two colors can 
be thought of as matching when the sensations of the cones 
are the same. However, metamers exist. These are spectrally 
different colors that under one illuminant are 
colorimetrically equivalent, but may not appear the same 
under different viewing conditions or to different observers. 
To attenuate the impact of metamerism, the printing industry 
has established guidelines for comparing color reproductions 
that specify viewing and lighting conditions to be used while 
making evaluations. Color management using ICC profiles1 
relies on colorimetry as basis for its profile connection space 
(PCS). Colors reproduced using such color management 
systems are only guaranteed to match under the viewing 
conditions for which the profile was prepared. There are 
times when it is desirable to produce reproductions that 
match under all illuminants.2-4 This is accomplished when 
reproduced spectra are the same as the original. One of the 
difficulties encountered in reproducing spectral images is the 
high dimensionality of spectral data.5 The techniques 
employed by ICC profiles using multi-dimensional look-up 
tables do not work well for the many dimensions that are 

needed to represent spectral data. Additionally, the problems 
of gamut mapping become vague and unwieldy.  
 In previous work6,7 a spectral image processing 
workflow from scene to print was described.  The proposal 
included the use of a low-dimensional Interim Connection 
Space (ICS) as a critical aspect of spectral color 
management.. The ICS provides a logical way-station during 
the transition between a full-dimensional spectral space and 
device-dependent units. Thus, ICS logically sits on the 
output side of a spectral PCS.  Conceptually, this allows the 
space to be device dependent if it were to be parameterized 
within a destination spectral profile.  
 Desirable characteristics of an ICS include a reasonably 
small number of dimensions and a computationally 
inexpensive calculation from spectra. This paper uses a 
method for deriving an ICS that adds the additional valuable 
feature of increased compatibility with current 
colorimetrically-based color management by explicitly 
incorporating colorimetry into its spectral representation. 
Converting spectral data to vectors of lower resolution with 
colorimetric parts have previously been discussed in the 
literature for use as a spectral image storage space.8 This 
paper introduces the use of such encoding, which we call 
spectral colorimetry, as a spectral data transformation 
space. Encoding an ICS with spectral colorimetry leads to 
novel approaches for spectral gamut visualization and 
spectral gamut mapping. 

Spectral Colorimetry 

The conversion from spectra to normalized tristimulus 
values can be expressed using matrix notation: 
 

c = Ds         (1) 

 
where a distillation matrix D represents the concatenation of 
a standard observer matrix O, the spectral power distribution 
of the illuminant matrix L, and a normalization based upon a 
perfect white under a chosen illuminant (matrix N). Thus: 
 

D = NOL         (2) 
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Spectral vectors s and corresponding tristimulus vectors 
c can be grouped into matrices. Thus (1) can be re-written as: 

 
C = DS         (3) 

A reconstitution matrix R can conceptually be thought of as 
the inverse of the distillation matrix D in (2). By using an S 
and the corresponding C calculated from (3) R can be found 
by multiplying S by the pseudo-inverse of C. Thus: 

 
S = RC        (4) 

 
R = SCT(CCT) -1             (5) 

 
Since R is calculated using a pseudo-inverse it will not 

be an exact inverse of D in (2). An error difference matrix 
can be calculated between the spectral matrix set and its 
round-trip through distillation and reconstitution can be 
calculated. 

 
E = (I – RD)S              (6) 

 
The resulting error matrix can be characterized and 

quantified by performing principal component analysis on E. 
The resulting eigenvectors (v) correspond to basis functions 
in spectral error space from applying the simple spectral 
reconstitution matrix R to normalized tristimulus vectors. 
Taking the most significant eigenvectors allows one to 
quantify the most significant errors as spectral error 
coordinates. 

 
p = V(I-RD)s            (7) 

 
The dimensionality of the spectral coordinate vector p is 

determined by how many eigenvector rows are in matrix V. 
LabPQR would use three. 

Putting Everything Together 

To Convert (Distill) a Spectral Reflectance Vector to a 
Multichromatic LabPQR Vector: 
1. Calculate distillation matrix D, reconstitution matrix R, 

& error basis matrix V using regression analysis and 
PCA. (Note this step only needs to be performed once. 
The D, R & Vmatricies can be cached). 

2. Calculate a normalized XYZ vector c using (1). 
3. PQR can be calculated using (7). 
4. LabPQR can be calculated from an XYZPQR vector 

using CIE equations. 

To Convert (Reconstitute) a Spectral Reflectance Vector 
from a Multichromatic LabPQR Vector: 
1. Convert Lab to normalized XYZ using inverse CIE 

equations thus creating a c vector 
2. Calculate reconstituted spectra s’ as follows: 

 s’ = Rc +VTp       (8) 

Going from PCS to ICS 
LabPQR makes an excellent candidate as an ICS for the 

following reasons: 
1. It is tuned to (based on) the reflectance spectra of the 

printer. It was previously pointed out there are “many 
arguments for designing an ICS so that it is particularly 
efficient at describing a printer’s spectral gamut.”6,7  

2. It is a low dimensional representation of reflectance 
spectra. 

3. It is relatively computationally inexpensive to transform 
from spectra to LabPQR. 

4. Because of its explicit colorimetric qualities, gamut 
mapping should be well served. 

5. Although the colorimetric portion of LabPQR is 
illuminant dependant, the full entity represents 
reflectance spectra and is thus illuminant independent. 

6. Because of where ICS falls in the spectral 
transformation workflow6,7 it is only necessary for 
LabPQR to describe the spectral gamut of the 
destination device. 

Implementation 
An implementation of spectral colorimetry was 

performed in a C++ program (SpecSep) that makes use of an 
open source C++ matrix library, NewMat10,9 that works 
well with large matrix sizes. For these discussions we do not 
differentiate between LabPQR and XYZPQR as they are 
considered equivalent. To evaluate the spectral round trip 
accuracy of taking original spectra through XYZPQR and 
back, a root mean squared (RMS) spectral difference 
calculation was made. Additionally the original spectra and 
reconstituted spectra were both converted to CIELAB under 
a Planckian 2856K illuminant and a ∆E2000 calculation was 
performed. 

Improvements  
 While implementing the SpecSep program two 

optimizations were also found to give better results: 
1.  A feedback mechanism was put in place to add greater 

weight to spectra that perform poorly in a round trip. 
Initially, the largest RMS error was calculated to set an 
initial threshold at 95% of the maximum RMS. Spectra 
with RMS errors greater than the threshold were 
repeatedly given greater weight to get the maximum 
RMS error reduced to the threshold. If the number of 
times the spectral weights were incremented was fewer 
than 20, then the threshold was reduced by 5%, and the 
process repeated again. This is an attempt to account for 
outliers without excessive overtraining. 

 2. XYZ+: Using non-linear combinations of coordinates 
improved accuracy by adding more degrees of freedom to 
the analysis. In addition to X, Y, & Z coordinates, XY, 
XZ, YZ, & XYZ were added to form a vector c’ that was 
used and substituted for as appropriate in (1) through (8).  

 

IS&T/SID Twelfth Color Imaging Conference

247



 

 

Testing the Implementation 
Several data sets were used to evaluate the 

implementation of spectral colorimetry in SpecSep. All the 
data sets tested had fairly smooth spectra, and were sampled 
at spectral wavelengths from 400nm to 700nm in 10nm 
intervals.  
 Two of the spectral reflectance data sets were obtained 
from the spectral database10 of the University of Joensuu: a 
“Munsell colors glossy (all)” set containing 1600 spectral 
colors, and an “Agfa IT.8/7.2” set containing 289 spectral 
colors. Additional spectral reflectance sets were obtained 
from measurements of prints of custom ICC profile charts 
that were produced from PosterShop by Onyx Graphics. 
Spectral readings were made using an Xrite Spectrofiler. 
Charts were printed both on a Mimaki JV3 solvent-based 
CMYKcm printer on vinyl, and a Roland HiFi Jet 540 
pigment-based CMYKOGcm printer on canvas. In both 
cases light concentrations of cyan and magenta are treated as 
extensions of the dark inks. The Mimaki JV3 data set 
contains a complete 11x11x11 sampling of the CMY 
channels in uniform 10% increments and this CMY subset 
was used as an independent test set.  
 Table 1 shows the round trip results from converting 
spectra using data-set-specific XYZPQR transforms, and 
then performing the back-conversion to reflectance spectra. 
The number of patches in the set, Min/Ave/Max RMS 
values, and Min/Ave/Max ∆E2000 color differences are 
shown. The bottom row shows the percentage of patches that 
have an RMS error greater than 90% of the Maximum RMS 
error. 
 

Table 1. Round Trip Results for Each Data Set Using its 
Own Optimized Transform 

 
Mimaki 
CMY 

Mimaki 
CMYK 

Roland 
CMYKOG 

Agfa 
dataset 

Munsell 
dataset 

# Patches 1331 2067 2239 289 1600 
Min RMS 0.001 0.0006 0.0014 0.0011 0.0007 
Ave RMS 0.0041 0.0043 0.0083 0.0044 0.0089 
Max RMS 0.0151 0.015 0.0199 0.0072 0.0285 

Min 

∆E2000 
0.0005 0.0015 0.0014 0.0008 0.0015 

Average 

∆E2000 
0.0556 0.0607 0.081 0.0764 0.045 

Max 

∆E2000 
0.6879 0.7052 0.5961 0.2805 0.5169 

High 
Patches 

0.45% 0.44% 1.34% 5.88% 0.81% 

 
 
It is possible to round trip reflectance spectra to and 

from each of the specific XYZPQR spaces, even those that 
were designed from other data sets. Table 2 shows one such 
case.  

For visualization purposes the columns in the 
reconstruction matrices R & V can be expressed as spectral 
graphs. Figures 1 & 2 show results from two data sets. 

Table 2. Round Trip Results using Munsell Optimized 
Transform 

 CMY CMYK CMYKOG Agfa 

Min RMS 0.0064 0.0004 0.001 0.0024 

Ave RMS 0.0217 0.0187 0.0143 0.0249 

Max RMS 0.0496 0.0498 0.0442 0.0848 
Min 

∆E2000 
0.0039 0.0015 0.0034 0.0044 

Average 
∆E2000 

0.0967 0.0903 0.0967 0.0729 

Max 
∆E2000 

0.3356 0.3356 0.3982 0.2054 

High 
Patches 

0.60% 0.73% 0.22% 3.46% 
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Figure 1. R matrix columns for estimating XYZ+. Munsell data set 
left, Roland CMYKOG right 

 
Munsell Error Basis Vectors
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Figure 2. V matrix columns for estimating PQR.  Munsell data set 
left, Roland CMYKOG right 

  

 
The following two figures show LabPQR coordinates as 

scatter plots of two simultaneous projections of Lab and 
PQR coordinates. 

Evaluating the Implementation 
The round trip errors on PQR’s customized to a 

particular dataset or printer were rather low. Even using a 
PQR space optimized for a different printer showed 
surprisingly robust results. The Munsell optimized transform 
performed best on other datasets. Table 2 shows it did not 
produce a ∆E2000 that exceeds 0.4. As expected, most RMS 
statistics in Table 2 are worse than those in Table 1.  It is 
interesting to note that in one case, the Agfa dataset, the 
Munsell PQR transform actually produces a lower number of 
high RMS errors although mean and maximum are better in 
Table 1.  Also interesting is the fact that in all cases the max 
∆E2000 in Table 2 is smaller than the corresponding one in 
Table 1.  Such negative interactions between RMS spectra 
and colorimetry have been noted before.7   
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Figure 3. Roland CMYKOG.  L*a*b* left, PQR right. 

  

Figure 4. Munsell dataset. L*a*b* left, PQR right. 

  

Figure 5. Munsell using Roland CMYKOG transformation.  
L*a*b* left, PQR right. 

 
 
 From the curves (Figures 1&2) it can be observed that 
the Reconstitution matrices for the different data sets are 
consistent with each other with respect to XYZ+, and P. The 
Q and R curves show greater differences.  
 From the scatter plots (Compare figures 4 and 5) it can 
be observed that using different LabPQR transforms result in 
different PQR encodings for the same Lab encodings.  

Spectral Gamut Visualization 
Imagine that a list of every possible device count 

combination (i.e., CMYKOG) is obtained with the 
corresponding LabPQR coordinate that represents the spectra 
for each device count combination. Then collect together all 
PQR coordinates for points that have exactly the same Lab 
value. A plot of these PQR coordinates corresponds to the 
spectral gamut of a Lab color. It is as if the Lab Coordinate 
is magnified to reveal spectral PQR sub-gamut volumes 
(Figure 6). This mimics the concept of metamerism. It 
follows that PQR can be used to describe the metameric 
black11 aspect of a spectrum.  

 

Figure 6. Spectral Gamut Visualization/Mapping 

Spectral Gamut Mapping using LabPQR 
With a visualization of a spectral gamut in mind, 

spectral gamut mapping can be considered. Colorimetric 
gamut mapping techniques can be extended rather easily by 
thinking of Lab coordinates as PQR volumes rather than as 
points. From Figure 6 there are three cases that need to be 
considered in terms of spectral gamut mapping: 
1. If a desired color’s LabPQR is in the output space then  

the spectrum can be exactly reproduced. No gamut 
mapping is necessary. 

2. If a desired LabPQR is not in the output space, but the 
Lab coordinate is in the output space, it can at least be 
represented colorimetrically under at least one 
illuminant. One possible way of performing spectral 
gamut mapping would be to find the closest PQR value 
that is within the spectral gamut. Since PQR 
corresponds to spectral error - minimizing distance in 
PQR minimizes spectral error.  

3. If the color is outside the colorimetric gamut then 
conventional gamut mapping techniques can be 
employed only using Lab coordinates.  

Conclusions 

Spectral Colorimetry is presented with definitions of color 
transforms for LabPQR. Several example transformations 
were demonstrated and observations were made. One of the 
key observations is that LabPQR provides a fairly accurate 
representation of the smooth reflectance spectra of the 
devices being characterized. It also transcends metamerism, 
and provides a convenient medium for performing Gamut 
Mapping since by definition it bridges colorimetry and 
spectral reflectance.   
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