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Abstract
Solving for a camera’s sensors based on its response to the
surfaces of a calibration target is an ill-conditioned prob-
lem with an infinite number of possible solutions. To ob-
tain a stable estimate we need to control the solution space
by constraining the sensors to match some known phys-
ical characteristics e.g. sensors are normally constrained
to be positive. The use of constraints limits the uncer-
tainty encountered in sensor recovery and results in im-
proved estimates. Unfortunately, it is not possible to know
which exact constraints should be used in recovering an
unknown sensor. In this paper we present a method to esti-
mate the support (the region where the sensor’s sensitivity
is not zero) of a sensor prior to recovering it. If the sen-
sor’s support is limited this constraint is very stringent and
imposing it on the solution space results in a clear reduc-
tion in the uncertainty encountered in the solution. In the
results section we show that it is indeed possible to recover
a sensor’s bandwidth based on its response to a set of re-
flectances.

1. Introduction

Camera sensor calibration is the problem of estimating the
device’s spectral sensitivities from its responses to a num-
ber of spectrally different surfaces. Generally, there are
two approaches to solving the spectral calibration problem,
physical and numerical. The physical approach involves
using a monochromater 1, which is a device capable of di-
viding the input light into monochromatic light-beams of
known wavelength. By measuring the camera’s responses
to these light-beams it is possible to achieve an accurate es-
timate of the spectral sensitivities at each wavelength. Un-
fortunately, this technique is expensive (a monochromater
is both costly to buy and time consuming to use) and as
such is limited to well equipped laboratories.

The numerical approach involves solving a linear sys-
tem of the form:

bi = Axi + εi (1)

where A is a m × n matrix of measured spectra, xi is a
n × 1 vector whose elements are the spectral sensitivity at
channel i, bi is the camera’s response and εi is the acqui-
sition noise vector. Finally, n is the dimensionality of the
data governed by the sampling rate, and m is the number
of surfaces.

The goodness of the solution for the spectral sensitiv-
ities based on Equation (1) depends on two main factors;
the first is the noise level in the response data, and the sec-
ond is the statistical properties of the spectral data available
from the calibration chart.

From linear algebra we know that when solving a lin-
ear system of equations with n unknowns such as the sys-
tem in Equation (1), exactly n equations are needed. More-
over, for a unique solution to exists all n equations need to
be linearly independent, i.e. no equation can be estimated
as a linear sum of the other equations 2. Statistical studies
based on large data sets clearly indicate that the number
of basis functions needed to adequately represent spectral
data is limited 3–5. In other words the actual dimensionality
of the data available in matrix A is less or much less than
n.

In the parlance of regularization theory 6, a linear sys-
tem with fewer independent equations than unknowns is
referred to as ill-conditioned or rank-deficient 7. Such sys-
tems have an infinite number of solutions, i.e. in the case
of sensor recovery as depicted in Equation (1) there are
more than one solution xi each of which are equally likely
to be the actual device’s sensitivities. Indeed, the authors
in8 presented an algorithm to recover the set of all feasi-
ble sensors, which satisfy certain physical constraints. The
findings in8 indicate that the uncertainty surrounding spec-
tral recovery is proportional to the size of the recovered set,
and is governed by a number of factors namely, noise level,
the dimensionality of the spectral data, and the constraints
imposed on the solution space.

A large body of research in spectral calibration con-
cludes that if the constraints used in the problem formula-
tion reflect the actual properties of the sensor, the estimated

IS&T/SID Twelfth Color Imaging Conference

217



sensitivities will be improved. In 9 the authors constrained
the sensors to be positive, smooth, and that they predict the
responses within an acceptable noise bound. In 10 the au-
thors added a constraint on the number of peaks allowed in
the recovered sensor, while the authors in 11–13 constrained
the sensor’s magnitude to be small.

Constraints improve upon the recovered sensitivities
by restricting the sensor to lie in a smaller region, known
as the feasible solution space 14. The more constraints we
add the smaller this region, the more certain we are that
the recovered sensor is the actual device’s sensitivities. In
this paper, we present a new constraint which addresses
the special case of sharp or bandlimited sensors, where a
sharp sensor is a sensor which is sensitive in a defined re-
gion of the visible spectrum. See Figure (1). Sharp sensors
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Figure 1: A sharp sensor which is sensitive only between 430 and
550nm.

are known to offer a number of advantages over broad-
band sensors. Finlayson showed that sharp sensors 15 are
able to better deal with changes in illumination conditions
and hence simplify colour constancy algorithms. More-
over, in the growing field of multispectral imaging 16 sharp
sensors are regularly used to sample spectra. To make
use of these qualities many ccd sensors are designed to
be bandlimited and calibrating them as a special case, with
the added bandlimits constraints, is advantageous. This is
evident from Figure (1), where we see that using a con-
straint to restrict the sensor to lie in the wavelength region
of 430 − 550nm reduces the feasible space to almost one
third of 400 − 700nm.

In12 it was noted that introducing a constraint which
sets the value of the sensitivities to zero in the wavelength
region where the sensor is known to be inactive, results
in an improved sensor recovery. However, no method is
presented by the author to solve for the bandwidth of the

sensor. Hence the constraint is not applicable when the ac-
tual sensitivities are unknown as is the case when calibrat-
ing a device based on measured rgb values and reflectance
data. Hence the question addressed in this paper is, given
that in real life applications the bandwidth of a sensor is
not known, how can we solve for the bandwidth based on
the sensor’s rgb response to a set of corresponding spectral
data? This information is used as a second step to improve
upon the recovery of the sensor.

2. Background

For computation, the response of a linear sensor to a spec-
tral stimulus can be modelled as:

p
i
= (Es)T ri + ni, i = 1, 2, 3 (2)

where E is a diagonal matrix whose diagonal elements are
the intensity of the scene’s illumination at each discrete
wavelength i.e. E = diag(e), s is the surface reflectance,
ri is the camera sensitivity vector at channel i, ni is the
noise level in the measurement and T is the matrix trans-
pose operator. Spectral functions are normally represented
by sampling at 10 nanometer intervals across the visible
spectrum17. Hence e, s and r are 31 × 1 vectors. Thus,

c = (Es). (3)

Based of Equations (2) and (3) we can write the sensor
response to a set of m spectral stimuli as:

P = CT R + N (4)

where R is a matrix whose columns are the red, green and
blue sensitivities of the camera respectively, P is an m× 3
matrix of camera responses and N is a m×3 measurement
noise matrix.

Grouping the response and noise matrices, Equation
(4) can be rewritten as:

PN = CT R (5)

where PN is equal to P − N .
In terms of Equation (5) sensor recovery is the prob-

lem of estimating R from PN and C. Numerically, there
are two approaches to solving Equation (5), namely direct
and iterative methods 18. Direct methods are those which
solve for the spectral sensitivities in one step by inverting
Equation (5) for R. Under this approach we include the
truncated singular value method also known as the prin-
cipal eigenvectors 9 and Tikhonov regularization 11–13. On
the other hand, iterative methods search for a solution to
Equation (5) which satisfies a number of constraints. In the
literature various iterative methods have been used to solve
the spectral calibration problem, those include projection
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onto convex sets POCS 9, quadratic programming 10 and
linear programming 19. These methods are also known as
constrained optimization techniques.

The algorithm presented in this paper as well as the
mathematical reasoning behind it derives from the fact that
given the right constraints, constrained optimization is more
robust than the direct methods or unconstrained optimiza-
tion12. This is because the uncertainty in the solution 8 de-
fined by the feasible solution space is reduced. Using an
additional constraint to define the bandwidth of the sen-
sors is guaranteed to either improve upon the recovery of
the sensor or result in an equally good estimate as the one
achieved without imposing the constraint.

3. The Importance of Locality

In this section we explore the importance of the locality
imposed by the additional constraint from a statistical re-
gression point of view. Let us assume that we are trying
to solve for the best linear model to describe the relation
between two data variables x, y, which have the distribu-
tion shown in Figure (2a). The best linear fit for the data
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Figure 2: Global verses local fitting.

points shown in Figure (2 a) results in the line plotted in the
same figure. If we were interested in fitting a linear model
based on the same data set but in the limited interval of
x1 −x2 we needn’t include the remaining measurement in
the regression. In Figure (2 b) we see that defining the re-
gression limits to be between x1 − x2, results in a line that
has a significantly different slope to that of the global line.

The idea of restricting the regression to local limits
is analogous to LOWESS (Locally Weighted Scatterplot
Smoother) due to 20. LOWESS uses weighted regression
to fit the first few points defined by a local bandlimit with
a little piece of line, and then moves on to the next few
points with another piece of line and so on. Local regres-
sion is proven to have a number of advantages over clas-
sical regression and is known to result in improved model
performance 21.

Our bandlimits for the local regression are defined by

the window over which the red, green and blue sensors
are active. Hence, the locality in recovering a bandlimited
sensor refers to the dimensions we use in the regression as
oppose to sub intervals along a single dimension as in the
example given in Figure (2 b). Knowing the bandlimits,
we would expect that fitting the data locally will result in
an improved spectral sensitivities solution.

4. Estimating Response from Spectral

In the literature there are many methods 22–24 aimed at solv-
ing for a reduced set of basis functions or spectral reflectances
to represent a larger set. In essence, the argument behind
all the methods is that a limited number of reflectances or
colour signals can be used to sufficiently describe a much
larger collection of surfaces.

Let us start with a n×1 colour signal cT . We can write
cT as a linear combination of a set of basis functions B:

cT ≈ wT B (6)

The weights wT in Equation (6) have dimensions of 1×k,
where k is the number of basis functions used and B is
a k × n matrix. Equation (6) can easily be extended to a
larger set of colour signals CT as:

CT ≈ WT B (7)

CT has dimensions m× n, where m is the number of sur-
faces and n is the dimensionality of the data. Note that
WT in Equation (7) is an m × k matrix.

In (7) B is an arbitrary basis set. However, for rea-
sons that will become clear it is more useful to choose real
reflectances for our basis. Hardeberg et al 22 introduced a
method for recovering a small set of surfaces which were
broadly representative of the set of all reflectances. We use
this set here which we denote Q̂. The ”hat” tells us that we
are referring to a real physical set of reflectances. We can
rewrite Equation (7) as:

CT ≈ WT Q̂T (8)

where Q̂T is a k × n matrix of the most significant re-
flectances 22. From Equation (5), we know that

p
N

= CT r (9)

For the response associated with the most significant re-
flectances Q̂, we can write

p̂
N

= Q̂T r (10)

If we post-multiply both sides of the equality Equation (10)
by the weights W defined in Equation (8), we get:

WT p̂
N

= WT Q̂T r (11)
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Equation (11) states that the linear weights defined in Equa-
tion (6) can be used to transform the response values cor-
responding to Q̂ into those of the global set, i.e.

p
N

= WT p̂
N

(12)

Before we can examine the goodness of the transform in
Equation (8) we need to solve for the weights W . From
the work in8,11 we know that the colour signal matrix CT

is ill-conditioned. Hence, to solve for the weights based
on Equation (6), we need to regularise the system. Using
Tikhonov regularisation 7, we can write the weights as:

WT = CT Q̂
(
Q̂T Q̂ + γ2I

)−1

(13)

where γ is the regularisation parameter 25.
The mathematical development so far tells us that, in

principle we can predict the responses of reflectances by
taking linear combinations of the responses of a small rep-
resentative set (when we take linear combinations of the
RGBs we are in effect taking linear combinations of the
underlying reflectances). But, how well does this actu-
ally work? An evaluation is presented below. Using 20
reflectances vectors to calculate the linear transform W ,
the spectral sensitivities of the MegaVision camera and the
colour formation equation, we synthesised 264 responses
corresponding to the Esser calibration chart. From the 20
responses corresponding to the most significant reflectances
i.e. p̂ and Q̂, we used Equation (12) to predict the remain-
ing 244 responses. For the actual and predicted responses,
we calculated the absolute error defined as:

abs = |p − W T p̂| (14)

The experiment was repeated with an increasing levels of
Gaussian noise (1% − 4%). Table (1) shows the resultant
mean, median and maximum absolute errors. The results

Absolute error
noise level 1% 2% 3% 4%
mean 0.94 1.96 2.90 3.82
median 0.94 1.95 2.94 3.84
max 2.25 3.86 5.42 7.64

Table 1: The the mean, median and maximum error for increas-
ing levels of added Gaussian noise.

shown in Table (1) are based on normalised response data
where the maximum value was set to 100. It is evident
that the mean and median errors are very close to the level
of noise added. Hence we might wonder if it is possible
to use the property of being able to synthesis responses
from spectral data to estimate the bandlimits. This idea
forms the crux of the method to find the limits of a sen-
sor sensitivity. If a sensor has sensitivity from 400 to 550

nanometres, then restricting our representative reflectances
to this range should ensure that they are as representative
as possible (they need only account for spectral variation
in a restricted part of the visible spectrum). It follows then
that if we begin with representative reflectances measured
for the whole spectrum and then restrict the spectral region
of interest we should reduce the prediction error. Of course
if we move to too small a wavelength region then the error
will increase.

5. Solving for the Bandlimits

In this section we show that using the local regression to
estimate responses introduced in the previous section, it is
possible to solve for the bandlimits by searching for the
best regression solution in terms of the weight W ?

Let us consider an arbitrary sharp sensor whose first
non-zero sensitivity is R(λs) and whose last is R(λe). For
such a sensor, W is defined as

ŴT = CT Q̂
(
Q̂T Q̂ + γ2I

)−1

: λs ≤ λ ≤ λe (15)

where C and Q̂ are the portion of the colour signal matrix
between λs ≤ λ ≤ λe. Note that, by varying the start λs

and end λe wavelengths of the sensor, we would converge
to a different transforms W . The corresponding response
calculated as in Equation (12) is different for every trans-
form σ̂ in Equation (15). Moreover, the mean absolute
error defined in Equation (14) is also different. Thus, if we
vary the start and end wavelengths λs ≤ λ ≤ λe and calcu-
late the response and associated error level, we should be
able to establish if there is a relation between the error level
and the actual bandlimits of the sensor. Our experiments
based on synthetic data with varying levels of added noise
indicate that the level of prediction error between the syn-
thesised responses and the actual over the actual bandwidth
of the sensor is either smaller than that achieved globally
or equally good. Hence the mean absolute error can be
used as a search criterion for the bandlimits of the sensor.
A pseudocode for the method is presented in Algorithm (1)
Algorithm (1): Estimating the bandlimits
Input

• Colour signals C

• Response at a given channel p

• The regularization parameter γ

• The colour signal basis vectors Ĉ

• define ER =very large positive number

for λs equals 400nm to 700nm step 10nm
for λe equals 700nm to λs step -10nm
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calculate

ŴT = CT Ĉ
(
ĈT Ĉ + γ2I

)−1

: λs ≤ λ ≤ λe

error = mean|p − Ŵ p̂|

if and only if error < ER
{
Start wavelength =λs,End wavelength =λe,
update ER=error
}

next λe

next λs

End Algorithm

6. Results

Our experiments were designed to verify two aspects of
the method the first being its ability to estimate the actual
bandwidth of an unknown sensor, while the second was
the usefulness of imposing the additional bandlimits con-
straint. To examine the first aspect we synthesised a num-
ber of Gaussian sensors with increasing bandlimits. See
Figure (3). Using these sensors and the spectral data of
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Figure 3: A number of Gaussian sensors with increasing band-
width.

the Esser calibration target we synthesised the sensor’s rgb
responses. These were then normalized such that the max-
imum response for all channels was set to 100. We then
added 2% Gaussian noise where the maximum noise level
at any channel was set to be less than 2. The algorithm’s
prediction of the start and end wavelengths for a number
of bandwidths is tabulated in Table (2). As we see from
the data in Table (2) the estimated bandwidth is within
±10nm from the actual bandwidth. Knowing that 10nm

Actual Start
wavelength

Actual End
Wavelength

Estimated
Start Wave-
length

Estimated
End Wave-
length

540 540 540 540
530 550 530 550
510 570 510 560
490 580 500 570
480 600 490 590
470 610 480 600
440 650 450 640

Table 2: The actual and estimated start and end wavelengths for
a number of Gaussian sensors.

is the sampling rate we can safely say that the recovered
bandwidth is in good agreement with the actual width of
the sensor. Here we have to note that the goodness of the
recovery is subject to the regularisation parameter used.
Our experiments show that it is possible to use a much
larger regularization parameter to recover the bandwidth
than the one derived using the L-curve criterion 25. Using a
regularization parameter of 0.1 − 1 resulted in acceptable
bandwidth estimates.

To test the usefulness of the added constraint in re-
covering the sensitivities of a real device we estimated the
bandwidth of the HP PhotoSmart 912 camera based on its
responses to the surfaces of the Esser calibration target.
The estimated bandwidths for the blue green and red sen-
sors, were found to be 400 − 540nm, 430 − 630nm and
550 − 700nm. Using the subsection of spectral data de-
fined by the bandwidth we recovered the sensitivities of
the camera using the quadratic programming techniques
as described in 10. Here the recovery was based on 120
patches chosen at random out of the targets 264 surfaces.
In keeping with statistical tests conventions we call the 120
set the training set and the remaining 144 the test set.

Using the recovered sensitivities we calculate the rela-
tive error at each channel defined as:

RE =
abs(pes − pac)

pac

× 100, (16)

where pes is the estimated response for the ith surface and
pac is the actual response. Further, to asses the goodness
of the recovery over all channels we made use of the Eu-
clidian distance defined as:

ED =

√
(pr

es − pr
ac)

2
+ (pg

es − p
g
ac)

2
+ (pb

es − pb
ac)

2

(17)
where pr

es, p
g
es and pb

es and the estimated responses for the
red, green and blue channels respectively and pr

ac, p
g
ac and

pb
ac are the corresponding actual responses. The results

for the two error metrics based on the test set (144 sur-
faces) are shown in Table (3). Knowing that all the re-
sponses were normalized such that the maximum value at
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relative error
channel
mean 3.72 3.41 3.31
median 2.78 2.61 2.36
max 28.61 28.10 28.07

ED error
mean medina max
2.02 1.33 26.77

Table 3: The mean, median, and maximum relative error at the
red, green and blue channels as well as the mean median and
maximum Euclidian distance error.

each channel was set to 100 we find that the mean and
median prediction errors for both metrics tabulated in Ta-
ble (3) are within 2 units, which is likely to be the noise
level encountered in the device. Further, by taking two im-
ages of the same target under fixed illumination conditions
we found that the error levels in Table (3) are equivalent
to those achieved by comparing the device’s responses for
image one and two. Thus, the error levels achieved here
are within the devices own variability.

7. Conclusions

In this paper we presented an algorithm to estimate the
bandwidth of an unknown sensor from spectral and re-
sponse measurements. We believe that the added band-
width knowledge is useful in estimating the spectral sensi-
tivities of bandlimited sensors. This knowledge can easily
be incorporated in all the established algorithms for sensor
recovery.
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