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Abstract

In this study, the problem of updating a printer character-
ization in response to systematic changes in print-device
characteristics is addressed with two distinct approaches:
the creation of corrective models used in conjunction
with an existing device model, and the re-evaluation of
regression-model parameters using an augmented char-
acterization data set. Several types of corrective models
are evaluated, including polynomial models and neural-
network models. A significant reduction in error was
realized by incorporating these techniques into the color-
management program NeuralColor. The most successful
of these methods was a quadratic polynomial correction
model, which removed 90% of the error introduced by
a change of paper stock, and all of the error introduced
by a change in toner cartridge. A general conclusion is
that simple corrective models exhibiting global control are
preferred over more complex models which may introduce
local errors.

Introduction

This study addresses the problem of updating a CMYK
printer characterization in response to systematic changes
in device characteristics. Printer characterization, along
with calibration, is critical to the performance of a printing
system. We consider characterization to be the generation
of a function (or an approximation to a mathematical func-
tion) mapping a device-dependent CMYK color space to a
device-independent color space, such as CIELAB. Implicit
in the above statement is a belief that an inverse function
between the device-independent space and CMYK space
can be generated if the forward function exists. Thus,
device characterization leads to a color correction model
capable of converting device-independent data to device-
dependent CMYK, as required for creating output on a
four-color print device. We consider device calibration to
refer to the process of maintaining consistent print-device
characteristics following device characterization.

A thorough device characterization is a relatively ex-
pensive process, commonly involving the printing and

measurement of a large number of color samples. Typi-
cally, colorimetric accuracy is highest immediately follow-
ing device characterization, and is reduced due to changes
in the print device. The resulting printing-system errors
can be reduced by calibrating the system periodically or as
necessary. This may involve, for example, attempting to
maintain the optical density of the colorants at a consistent
level. This approach does not consider ink interactions
and is likely to be less accurate than a full system rechar-
acterization. A trade-off exists between attempting to
maintain consistent printer characteristics and performing
a full device characterization; methods for maintaining
printer characteristics are generally less expensive, but
performing a full device characterization is more accurate.
Additionally, accurate calibration requiring a limited num-
ber of measurements better facilitates printer calibration
by the user as opposed to the print device vendor.

The characteristics of a print device may change due to
a number of influences, such as changes in ambient humid-
ity or ambient temperature, changes in toner or ink proper-
ties, changes in electrophotographic drum characteristics,
changes in optical performance of printheads, or changes
in paper characteristics. Changes in printer characteristics
may occur suddenly, as when the paper stock is changed,
or slowly, as when mechanical or electrical properties of
the print device drift over time.

The goal of this work is to update a previously charac-
terized four-color printing system in response to system-
atic changes in print-device characteristics. To be success-
ful, methods must be efficient relative to a full system char-
acterization. In addition, methods must reduce overall col-
orimetric error without introducing significant new error in
any part of the gamut.

Two distinct approaches are used to update a printer
characterization: the application of a corrective method
used in conjunction with the original printer model, and
the re-evaluation of printer-model parameters based on an
augmented characterization data set. Both techniques are
evaluated experimentally by changing the paper stock and
cyan toner cartridge in a printing system, and attempting
to update the printer characterization in response to these
changes.
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Previous work

Compared to research present in the literature, the work
completed in this study is most closely related to that of
Balasubramanian and Maltz [1]. Balasubramanian and
Maltz hypothesized that a local linear transform can ad-
equately capture the difference between actual printer
behavior and a printer model. They created local, matrix-
based correction models to capture both systematic and
random errors, such as printer drift, printer model error, or
look-up table (LUT) approximation error. The coefficients
for the correction matrices were determined by weighted
regression in such a way that they could vary considerably
over the printer color space. Balasubramanian and Maltz
tested their method by attempting to improve the accuracy
of a LUT based color-management system for a XeroxÒ

5760 printer. They were successful in reducing the average
model error from 4.85 ∆E∗

ab to just over 2.62 ∆E∗
ab for a

set of 500 test patches.

Despite the small number of studies addressing the im-
provement of an existing printer characterization, the need
for such improvement is mentioned consistently in the
literature. Shiau and Williams, for example, considered a
combined scanner-printer system [2]. They developed a
method in which a corrective matrix is applied to the RGB
values output by a scanner, prior to calculating the device-
independent values sent to the printing system. The topic
of efficient calibration and characterization in general was
studied by Haneishi et al., who investigated the number
of measurements required for scanner characterization [3].
Emmel and Hersch mention the need to recharacterize
quickly when the paper or ink cartridge of a printer is
changed [4]. They address characterization as it pertains
to the creation of ICC profiles; they suggest using printer
models that can be built with a relatively small number of
colorimetric measurements to produce the full set of points
in a LUT, as opposed to measuring all the data directly.
They relate this to recharacterization by pointing out that
a full system recharacterization can be achieved more effi-
ciently if a small number of measurements are required to
generate the full LUT.

This study focuses on correcting an existing printer
characterization in response to systematic changes in printer
characteristics. The following sections outline two general
approaches, the use of corrective models of various forms,
and the recalculation of model parameters using a small
number of new characterization data. These methods are
validated experimentally, with results favoring methods
using relatively simple corrective models.

Methods

The true output, ytrue, of a multiple-input, single-output
system may be expressed as

ytrue = y(x) + Es + Er, (1)

where x are model inputs, y(x) is a model of the system
output, Es are systematic errors associated with the system,
and Er are random errors associated with the system.

For the printing system studied in the present work,
a system model y(x) was created for each of the three
CIELAB output values. These system models, fL, fa, and
fb, are each a function of the four colorant dot fractions
C, M , Y , and K. The functions fL, fa, and fb are the
main components of the NeuralColor color-management
system, as discussed in the Experimentation section.

Corrective Models

A corrective model F(ξ) ≈ −Es may be applied in addi-
tion to the system model expressed in Equation 1, giving

ytrue = y(x) + F(ξ) + Es + Er (2)

≈ y(x) + Er.

The corrective-model inputs ξ need not match the system
inputs x. The approach of adding a corrective model does
not make any assumptions about the nature of the original
system model y(x). This strength allows corrective models
to be applied to any type of color-management system.

There are several requirements for a useful corrective
model: the model should accurately capture systematic er-
rors, the model should be efficient to create, and the model
should not introduce any new local or global errors into the
system.

Several corrective models, ranging from from very
simple to more complex, are examined in the present
study. Specifically, linear corrective models, quadratic
corrective models, and artificial-neural-network (ANN)
corrective models were implemented. Parameters for the
linear and quadratic models were calculated using linear
regression. For the ANN models, nonlinear regression
techniques were required.

The linear corrective models take the following general
form,

F(ξ) = a0 + a1ξ1 + a2ξ2 + · · · + anξn. (3)

For a model with n inputs, a minimum of n + 1 data are
required to compute the coefficients ai by regression. To
allow more generality, the linear corrective models imple-
mented in this study are a function of both the CMYK dot
fractions, and the CIELAB values predicted by the original
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system models,

F(C,M, Y,K, fL, fa, fb) =

a0 + a1C + a2M + a3Y + a4K

+ a5fL + a6fa + a7fb. (4)

Expanding the linear model to include the full set of
quadratic terms yields

F(C,M, Y,K, fL, fa, fb) =

a0 + a1C + a2M + a3Y + a4K + a5fL + a6fa

+ a7fb + a8C
2 + a9M

2 + a10Y
2 + a11K

2 + a12f
2

L

+ a13f
2

a + a14f
2

b + a15CM + a16CY + a17CK

+ a18CfL + a19Cfa + a20Cfb + a21MY + a22MK

+ a23MfL + a24Mfa + a25Mfb + a26Y K + a27Y fL

+ a28Y fa + a29Y fb + a30KfL + a31Kfa + a32Kfb

+ a33fLfa + a34fLfb + a35fafb. (5)

The full quadratic model requires 36 new data points (over
and above those used for original printer characterization)
for computation of the model parameters. The mixed
terms can be dropped from Equation 5, yielding a simpli-
fied quadratic model,

F(C,M, Y,K, fL, fa, fb) =

a0 + a1C + a2M + a3Y + a4K + a5fL + a6fa

+ a7fb + a8C
2 + a9M

2 + a10Y
2 + a11K

2

+ a12f
2

L + a13f
2

a + a14f
2

b . (6)

Computation of the model parameters in this case requires
15 data points.

ANN corrective models offer a more complex alterna-
tive to the polynomial regression models given in Equa-
tions (4), (5), and (6). They have the ability to model
more complex systematic errors, but are also more sus-
ceptible to overfitting and introducing new error to the
system. The ANN corrective models examined in this
study are feed-forward networks with one hidden layer.
They utilize hyperbolic tangent as the activation function.
As with all regression models, the minimum number of
data required for regression is equal to the number of
unknown parameters in the system. The unknown param-
eters for ANNs are the weights and biases of the network.
The number of weights in the ANNs used in this study
is Nneurons(Ninputs + Noutputs), and the number of bi-
ases is (Nneurons + Noutputs). Because ANN outputs are
nonlinear functions of the weights and biases, nonlinear
regression is required to solve for model parameters.

Recalculating regression-model parameters

The alternative approach of updating an existing printer
model based on a small set of newly acquired data may be

applied to regression models. Newly-acquired data, com-
bined with the original characterization data, form an aug-
mented data set. An updated printer model is created by
calculating new model parameters using this augmented
data set. Weighting factors can be applied to the new data
to control their influence. Conceptually, it is hoped that the
underlying behavior of the system will be captured by the
original characterization data, and the recharacterization
data will provide a corrective effect in response to changes
in the printing system.

The weighting of the new data must be carefully con-
sidered when retraining the regression models. If the new
data are not weighted heavily enough, the retrained mod-
els will not differ significantly from the original models.
If the new data are weighted too heavily, the system be-
havior captured by the original characterization data will
be lost. There is also a potential for the introduction of
new local errors when adding heavily-weighted data to the
characterization set, as the regression models may develop
undesirable local behavior in an attempt to fit the new data.

The color-management system used in this study, Neu-
ralColor, is suitable for the approach of updating using a
small set of new data. The regression models used by Neu-
ralColor are ANNs that predict CIELAB values based on
CMYK dot fractions.

Although ANN models were studied in the current
work, the approach of recalculating model parameters
can be applied to other types of color-management sys-
tems as well. Direct application of this method is suitable
for any regression-based color-management system, such
those using polynomial regression models [5, 6]. With
the addition of several computational steps, the method of
recalculating parameters with an augmented data set could
be applied to a much wider range of color-management
systems. In the case of a LUT-based system, for example,
regressions model could be derived from the LUTs, up-
dated using recharacterization data, and then used to create
a new set of LUTs.

Experimentation

The methods outlined in the previous section were eval-
uated with a series of two experiments. In the first ex-
periment, systematic error was introduced into a printing
system by changing the paper stock. In the second experi-
ment, error was introduced by changing the cyan toner car-
tridge. Experiments were carried out using a TektronixÒ

PhaserÒ 740 printer. The NeuralColor program was used
as the color-management system, as described in the fol-
lowing section. Color measurements were made using a
X-RiteÒ Digital SwatchbookÒ spectrophotometer.
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NeuralColor

The program NeuralColor is a color-management system
developed previously by the authors [7, 8, 9, 10]. Neu-
ralColor is based on Pareto-optimal formulations that cast
the color management problem in terms of competing
objectives such as colorimetric accuracy, cost, and ink
usage. The Pareto-optimal method requires the mapping
functions fL(CMY K), fa(CMY K), and fb(CMY K)
that predict CIELAB values based on CMYK inputs, and
a numerical optimization routine capable of solving non-
linear equality- and inequality-constrained optimization
problems.

NeuralColor uses ANNs for the mapping functions fL,
fa, and fb. Each ANN is a function of C, M, Y, and K. The
ANNs contain one hidden layer, with five, six, and seven
neurons, respectively. Hyperbolic tangent is used as the ac-
tivation function. The training data for the ANNs consist
of 149 colors selected to capture printer behavior over the
entire device gamut. For a listing of the 149-color charac-
terization set, please refer to Littlewood, Drakopoulos, and
Subbarayan [9]. The initial printer characterization in this
study was determined by printing six copies of the 149-
color characterization set. The data were averaged over
the six measurements and used to train the ANNs fL, fa,
and fb.

For the purpose of the present study, NeuralColor may
be viewed simply as a color-management system based on
regression models. Since NeuralColor utilizes regression
models, the approach of recalculating model parameters
using an augmented data set may be applied directly.

Recharacterization data set

The choice of a recharacterization data set is important to
ensure that a color-management system is updated accu-
rately and efficiently. For the sake of efficiency, the data set
should be as small as possible. Accuracy, however, tends
to improve with an increase in the number of new measure-
ments. Additionally, it is important that the recharacteriza-
tion data be carefully located in the printer gamut, so as to
accurately capture changes throughout the range of print-
able colors. Knowledge regarding the underlying changes
in printer characteristics may be used to choose new mea-
surement colors intelligently, perhaps focusing on an iso-
lated part of the printer gamut if the changes are known to
be local in nature.

Two sets of recharacterization data were used in this
study, one containing 18 colors, and one containing 36 col-
ors. In both cases, an effort was made to capture changes
over the entire printer gamut. The 18-color set was created
using the eight chromatic primaries of four-color printing,
as well as an overprint of the three subtractive primaries,
an overprint of all four colorants, and mixtures of each pri-

Table 1: The 18-color recharacterization set.

C M Y K
1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0
0.0 1.0 1.0 0.0
1.0 0.0 1.0 0.0
1.0 1.0 0.0 0.0
1.0 1.0 1.0 0.0
1.0 1.0 1.0 1.0
0.0 0.0 0.0 0.0
0.5 0.0 0.0 0.5
0.0 0.5 0.0 0.5
0.0 0.0 0.5 0.5
0.0 0.5 0.5 0.5
0.5 0.0 0.5 0.5
0.5 0.5 0.0 0.5
0.5 0.5 0.5 0.0
0.5 0.5 0.5 0.5

Table 2: The additional 18 color patches in the 36-color rechar-
acterization set.

C M Y K
0.3 0.0 0.0 0.0
0.0 0.3 0.0 0.0
0.0 0.0 0.3 0.0
0.0 0.0 0.0 0.3
0.0 0.3 0.3 0.0
0.3 0.0 0.3 0.0
0.3 0.3 0.0 0.0
0.3 0.3 0.3 0.0
0.3 0.3 0.3 0.3
0.7 0.0 0.0 0.0
0.0 0.7 0.0 0.0
0.0 0.0 0.7 0.0
0.0 0.0 0.0 0.7
0.0 0.7 0.7 0.0
0.7 0.0 0.7 0.0
0.7 0.7 0.0 0.0
0.7 0.7 0.7 0.0
0.7 0.7 0.7 0.7

mary with black at 50% dot fraction. The 18-color set is
presented in Table 1. The 36-color set is a superset of the
18-color set, with additional colors comprised of the eight
chromatic primaries, an overprint of the three subtractive
primaries, and an overprint of all four colorants, each at
30% and 70% dot fractions. Table 2 gives the additional
CMYK values used in the 36-color set.

Evaluation methodology

Two sets of experiments were carried out to evaluate the
recharacterization methods. In the first set of experiments,
systematic error was introduced into the printing system
by changing the paper stock. A standard white NekoosaÒ

Bond by Georgia-PacificÒ was used as the original paper
stock, and was then replaced with a multipurpose XeroxÒ

paper that is light gray in color. In the second set of exper-
iments, colorimetric error was introduced by substituting
an older cyan cartridge for the cartridge used during the
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original characterization. Both changes resulted in signifi-
cant colorimetric error, and the goal was then to update the
system in response to these changes.

A total of seven different corrective models were ap-
plied in each set of experiments, as follows:

1. A linear polynomial model (Equation 4) based on
the 18-color data set;

2. A linear polynomial model based on the 36-color
data set;

3. An abridged quadratic model (Equation 6) based on
the 18-color data set;

4. An abridged quadratic model based on the 36-color
data set;

5. A full quadratic model (Equation 5) based on the 36-
color data set;

6. A one-hidden-neuron ANN model based on the 18-
color data set; and,

7. A one-hidden-neuron ANN model based on the 36-
color data set.

To evaluate the method of adding newly acquired char-
acterization data to an existing data set, both the 18- and
36-patch characterization sets were added to the original
149-color characterization set used to train the ANNs fL,
fa, and fb used by NeuralColor. Two weighting schemes
were used in each case. Each of the two sets was added
five times and twenty times, resulting in four cases overall:

1. The original 149-color set combined with the 18-
color recharacterization set added five times (239
data total);

2. The original 149-color set combined with the 18-
color recharacterization set added twenty times (509
data total);

3. The original 149-color set combined with the 36-
color recharacterization set added five times (329
data total); and,

4. The original 149-color set combined with the 36-
color recharacterization set added twenty times (869
data total).

Test problem

A test problem containing 51 patches was constructed to
evaluate the recharacterization methods for a variety of
in-gamut and out-of-gamut colors. The MacBeth Color-
Checker ChartÒ makes up the first 24 patches in the test

print. It is important to note that the MacBeth Color-
Checker ChartÒ contains colors that are outside the gamut
of the Tektronix Phaser 740Ò printer used in this study,
and hence cannot be reproduced with zero colorimetric
error. An additional 27 in-gamut colors spanning several
lightness levels and a variety of hues in the CIELAB color
space were included as well. Specifically, at lightness lev-
els of both 20 and 80, nine patches were specified with a

and b set equal to all combinations of -10, 0, and 10. At
a lightness level of 50, nine patches were specified with a

and b equal to all combinations of -20, 0, and 20.
Test results are tabulated as follows: overall error, er-

ror for the MacBeth chart, and error for the 27-color test
print. The single largest error throughout the 51-patch
test is also listed, as well as the number of test colors im-
proved by the corrective method. Three copies of the test
patches were printed in each experiment, and the measured
CIELAB values were averaged over the three prints. ∆E∗

ab

error values were determined by comparing the original
CIELAB input values to the measured CIELAB values.

Results

Changes in printer characteristics resulting from the change
in paper and the change in cyan toner cartridge are illus-
trated in Figures 1 and 2. These figures were created by
reprinting the 149-color characterization set after changing
the paper and toner, respectively. The new measurements
of the 149-color characterization set were used only to
create Figures 1 and 2; they were not used for updating the
printer models. In the case of the change in paper stock,
the general shift is toward the neutral axis with a decrease
in lightness for colors in the high-lightness region. This
is as expected, since the replacement paper has a much
darker white point than the original paper. The change in
paper stock increased average colorimetric error over the
149-color set from 5.0 ∆E∗

ab to 10.0 ∆E∗
ab. The general

shift resulting from the change in cyan toner cartridge was
toward the cyan portion of the gamut. The change in cyan
toner cartridge increased average colorimetric error from
5.0 ∆E∗

ab to 7.6 ∆E∗
ab.

Change of paper

Corrective-model results for the change in paper stock are
presented in Table 3. The corrective models gave excel-
lent results, with the exception of the full quadratic model
and the ANN model based on 18 colors. The successful
corrective models removed between 80% and 90% of the
error.

The full quadratic corrective model failed to reduce the
average system error, had a maximum error of 87.9 ∆E∗

ab,
and improved only three patches. In the case of the full
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Figure 1: Change in printer output resulting from the change of paper.

-60 -40 -20 20 40 60

20

40

60

80

100

a

L

(a) L-a plane.

-60 -40 -20 20 40 60

20

40

60

80

100

b

L

(b) L-b plane.

-80 -60 -40 -20 20 40 60 80

-80

-60

-40

-20

20

40

60

80

a

b

(c) a-b plane.

Figure 2: Change in printer output resulting from the change of cyan toner cartridge.

quadratic model, the number of model parameters is ex-
actly equal to the number of recharacterization data, re-
sulting in an interpolation of the recharacterization data.
This interpolation is highly susceptible to noise.

The corrective ANN model based on 18 colors also in-
troduced error, as seen in the increased maximum error.
Here, the corrective model improved 43 of the 51 test col-
ors, but introduced error elsewhere, which is characteristic
of overfitting.

Results obtained using an augmented data set to retrain
the ANNs used by NeuralColor are given in Table 4. In
each case, the newly trained ANNs yielded a lower overall
error than the ANNs trained with the original characteri-
zation set and did not significantly increase the maximum
error. The corrective ANNs trained with the 36-color set
outperformed those trained with the 18-color set. In gen-
eral, the number of times each data set was added did not
have a significant impact on the results.

Change of toner cartridge

Results obtained for the application of corrective models
to correct for the change in cyan toner cartridge are pre-
sented in Table 5. Table 5 includes two additional data
columns, one giving the error for printed patches with a
cyan dot fraction less than 0.5, and one giving the error for

printed patches with a cyan dot fraction greater than 0.5.
Both of the linear models and both of the ANN models
succeeded in reducing the overall error by between 76%
and 93% without a significant increase in maximum error.
The abridged quadratic model actually outperformed the
original characterization under the original conditions, in-
dicating that all the systematic error was removed. As in
the change-of-paper experiment, the full quadratic correc-
tive model failed completely.

Results obtained using an augmented data set to re-
train the ANNs used by NeuralColor in response to the
change in cyan toner are given in Table 6. The retrain-
ing of ANNs with an augmented data set was less suc-
cessful for the change in cyan toner than for the change
in paper stock. ANNs trained with the 18-color set did
not significantly improve the overall error, and dramati-
cally increased the maximum error. The ANNs trained
with the 36-color set had similar results; the overall error
increased slightly and the maximum error increased dra-
matically. Only the ANNs trained with the 36-color set
included five times reduced the error across all the error
categories and did not introduce new error into the region
of the printer gamut with a cyan dot fraction of less than
0.5.
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Table 3: Results for corrective models - change of paper.

Overall MacBeth Chart 27-color Test Max. Number
Approach ∆E∗

ab
∆E∗

ab
∆E∗

ab
∆E∗

ab
Improved

Orig. characterization, orig. paper 5.0 6.7 3.4 16.1 N/A
Orig. characterization, new paper 10.0 11.9 8.4 21.2 N/A

Linear model (18 pt.) 5.6 8.3 3.3 21.3 47
Linear model (36 pt.) 5.6 8.0 3.4 20.5 47

Abridged quadratic model (18 pt.) 6.3 9.0 3.9 21.6 46
Abridged quadratic model (36 pt.) 5.5 7.9 3.3 21.1 48

Full quadratic model (36 pt.) 39.6 42.6 36.9 87.9 3
ANN model (18 pt.) 8.0 8.9 7.2 29.6 43
ANN model (36 pt.) 5.9 8.4 3.6 20.9 48

Table 4: Results for regression model retraining - change of paper.

Overall MacBeth Chart 27-color Test Max. Number
Approach ∆E∗

ab
∆E∗

ab
∆E∗

ab
∆E∗

ab
Improved

Orig. characterization, orig. paper 5.0 6.7 3.4 16.1 N/A
Orig. characterization, new paper 10.0 11.9 8.4 21.2 N/A

18-color set included 5 times 7.2 10.3 4.5 20.9 43
18-color set included 20 times 7.4 10.0 5.1 21.2 43
36-color set included 5 times 6.6 9.4 4.1 22.1 45
36-color set included 20 times 6.6 8.9 4.6 22.5 39

Table 5: Results for corrective models - change of cyan toner.

MacBeth 27-color
Overall Chart Test C > .5 C < .5 Max. Number

Approach ∆E∗

ab
∆E∗

ab
∆E∗

ab
∆E∗

ab
∆E∗

ab
∆E∗

ab
Improved

Orig. characterization, orig. cartridges 5.0 6.7 3.4 5.6 4.6 16.1 N/A
Orig. characterization, new cyan cartridge 7.6 9.2 6.2 10.5 6.0 18.5 N/A

Linear model (18 pt.) 5.6 7.1 4.3 6.7 5.0 18.0 40
Linear model (36 pt.) 5.2 6.9 3.6 5.8 4.9 17.1 40

Abridged quadratic model (18 pt.) 8.9 10.8 7.2 6.6 10.2 30.0 27
Abridged quadratic model (36 pt.) 4.6 6.8 2.5 4.6 4.5 18.6 40

Full quadratic Model (36 pt.) 33.9 42.5 26.3 31.2 35.4 104.5 3
ANN model (18 pt.) 5.4 7.0 4.0 5.5 5.4 18.1 35
ANN model (36 pt.) 5.3 7.1 3.6 5.8 5.0 18.2 36

Table 6: Results for regression model retraining - change of cyan toner.

MacBeth 27-color
Overall Chart Test C > .5 C < .5 Max. Number

Approach ∆E∗

ab
∆E∗

ab
∆E∗

ab
∆E∗

ab
∆E∗

ab
∆E∗

ab
Improved

Orig. characterization, orig. paper 5.0 6.7 3.4 5.6 4.6 16.1 N/A
Orig. characterization, new cartridge 7.6 9.2 6.2 10.5 6.0 18.5 N/A

18-color set included 5 times 7.5 11.5 3.9 6.6 7.9 45.7 39
18-color set included 20 times 5.9 8.2 3.8 5.3 6.2 23.6 35
36-color set included 5 times 6.0 7.6 4.5 8.3 4.7 17.6 38
36-color set included 20 times 8.8 10.2 7.6 8.1 9.2 35.0 31
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Conclusions

This study validates corrective methods as a means to ef-
ficiently and accurately update an existing print-device
characterization. The most successful of the methods
employed are the linear, abridged quadratic, and one-
hidden-neuron ANN corrective models, which reduced
overall error for the change of paper and toner without
introducing new error into the system.

Overfitting should be a major concern in the design of
corrective methods. In this study, the errors introduced by
the change of paper stock and the change of toner cartridge
were approximately equal in magnitude to the error of the
original printer model. This sets the stage for corrective
methods to potentially overfit the model error, resulting in
the unacceptable introduction of new error into the system.
The balance between local and global control is crucial;
methods that capture some local behavior can accurately
model changes in the printing system, but if local behav-
ior is too strong the corrective model may behave unpre-
dictably in local regions. A corrective model that improves
overall accuracy but introduces new local errors is a poor
corrective method, and therefore it is recommended that
simple corrective models exhibiting global control be se-
lected. In addition, overfitting can be reduced by choosing
a model with a small number of regression parameters rel-
ative to the size of the recharacterization set.

The ANN corrective models used in this study should
be used cautiously. Their tendency to exhibit strong lo-
cal behavior makes them prone to overfitting. If corrective
ANNs are used, the number of hidden neurons should be
kept small.

It is difficult to draw conclusions regarding the retrain-
ing of ANNs with an augmented data set. This approach
was largely successful in reducing overall model error,
but the maximum error across the entire printer gamut
was often increased, and this detracts from the value of
the method. As a general method, the approach of re-
evaluating regression-model parameters may be valid, but
additional studies are required in which this approach is
applied to other types of regression models.
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