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Abstract
The gamut of a colour space is defined by a number of ex-
treme points. The best inks to achieve an accurate spectral
reproduction of a given target are those which span the tar-
get’s spectral gamut. Using a modified non-negative ma-
trix factorization (NMF) algorithm we derive m colorants
and their spectral curves such that they are the extreme
points of the targets gamut. Using the spectral Neugebauer
printing model where eight colorants are assumed we com-
pare our new method with existing techniques. Compari-
son with a set of optimal rotated principal vectors as well
as the classical NMF clearly shows that the performance
of the new method is superior.

1. Introduction

The rapid development of digital imaging devices is ac-
companied by the user-expectation that the quality of the
reproduced image is very high. To satisfy this expecta-
tion, digital images need to be captured and reproduced
with high colour fidelity, i.e. they need to be as truthful as
possible to the original. There are two measures to assess
colour fidelity, the first is the degree to which an image and
its reproduction appear to be identical to a human observer,
while the second is the degree to which the spectral data of
the image is accurately reproduced in the print.

Due to metamerism, which is the phenomenon that many
spectrally different surfaces integrate to exactly the same
CIEXYZ response, it is possible to produce a large number
of spectrally different prints which appear identical both
to each other and to the original image. These images are
metameric to each other and satisfy the first colour fidelity
measure defined above. Conventional printing, where three
to four inks are normally used, is based on the idea that it
is sufficient to produce a metameric match of the origi-
nal image. The main problem with this approach is that
the colour of the reproduced image appears to be identi-
cal to the original only under certain conditions such as
fixed illumination and observer. If the illumination source
changes then the reproduced image will no longer appear

to be identical to the original and hence violates our first
condition for high colour fidelity quality.

In order for a printed image to be identical to the orig-
inal under any viewing conditions, it needs to be an ex-
act spectral reproduction of the original. Moreover, if two
images are an exact spectral copy of each other then any
change in the spectral power distribution of illumination
source will affect them equally. Hence an observer will
not perceive any differences between the two. Unfortu-
nately, unlike conventional metameric printing, which re-
quires three inks, achieving a spectral match is a challeng-
ing process where a larger number of spectrally different
inks is needed.

This paper is concerned with the question of how many
inks are needed to accurately reproduce a spectral image
and which spectral properties these inks should have. Due
to practical considerations relating to cost and complex-
ity the number of inks used should be kept to a minimum.
Hence the question which we need to answer is which few
inks should we use in printing a specific target. From the
statistical studies in 1–4 and others all of which show that
a very large number of reflectances can be well described
using six to eight basis functions, we might think that the
best colorants are related to the basis functions needed to
adequately describe the data. Indeed the authors in 5 pro-
posed a rotated version of the first six basis functions of
the spectral data to be used as the best possible colorants.

This paper follows on from the idea presented in 5, in
that we agree with the authors that the properties of the
selected inks should be derived from the original spectral
image. Though, to optimize the selection of the colorants
we combine the selection procedure with the Neugebauer
printing model which is considered as the basic physical
model for printing systems 6,7. The spectral Neugebauer
equations state that an arbitrary reflectance can be esti-
mated as a convex sum 8 of the colorants and their asso-
ciated combinations. This basic definition indicates that it
is not possible to achieve an errorless spectral reproduction
of a reflectance unless it is known to be inside the gamut
defined by the set of colorants. Hence to minimise the er-
rors in the printing process we choose the colorants such
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that the gamut they define encompasses as many as possi-
ble of the reflectances which we wish to reproduce.

2. Theory

2.1. Kubelka-Munk Model

The Kubelka-Munk theory is a general theory for predict-
ing the reflectance of single colorants and their combined
mixtures. Before we introduce an expression for the re-
flectance of a mixture of inks we need to define a few ba-
sic properties of colorants. The reflectance of an infinitely
thick surface is defined as:

R∞(λ) = 1 +
K(λ)

S(λ)
−

√(
K(λ)

S(λ)

)2

+ 2

(
K(λ)

S(λ)

)
(1)

A colorant is infinitely thick, i.e. has reflectance R∞ if an
increase in the thickness of the colorant layer does not re-
sult in a change in its reflectance. K(λ) and S(λ) in Equa-
tion (1) are the spectral absorption and spectral scattering
coefficients, respectively.

The ratio between the absorption and spectral scatter-
ing coefficient can be obtained by inverting Equation (1),
i.e.

K(λ)

S(λ)
=

(1 − R∞(λ))

2R∞(λ)
(2)

For a mixture of colorants the absorption coefficient K(λ)
can be defined as:

K(λ) = Kp(λ) +

nk∑

i=1

ζiki(λ) (3)

where Kp(λ) is the absorption coefficient of the paper, nk

is the number of inks used and ζi is the concentration of
colorant i.

The reflectance of a transparent colorant can be written
as:

R(λ) = Rp(λ)exp[−2XK(λ)] (4)

where X is the thickness of the colorant layer. Inverting
Equation (4) we get:

K(λ) = −0.5 ln
[

R(λ)

Rp(λ)

]
(5)

where ln is the natural logarithm.
Finally, using Equations (4) and (3) we can write the

reflectance of a mixture of colorants as:

R(λ) = Rp(λ) exp

[
−2X

(
Kp(λ) +

nk∑

i=1

ζiki(λ)

)]
(6)

2.2. Neugebauer Printing Model

The Neugebauer printing model is an attempt to mathe-
matically account for halftone printing 9. Neugebauer rec-
ognized that given two concentration levels for a colorant.
i.e. full concentration and zero then there are

N = 2nk , (7)

colorant combinations. Hence if the number of inks is
nk = 3 then the number of combinations N = 23 = 8.
The ink combinations are known as the Neugebauer pri-
maries and can be calculated using the Kubelka-Munk or
the Beer-Bouguer 10 models. Given these primaries, we
can use the Neugebauer equation to model an arbitrary re-
flectance as:

R(λ) =
N∑

i=1

wiPi (8)

where, wi is the ith area coverage of the ith Neugebauer
primary with reflectance Pi. By default all wi have to be
positive numbers defined in the range 0 ≤ wi ≤ 1. Fur-
thermore, the sum of all wi has to be equal to one. Given
these properties, we can rewrite the classical Neugebauer
equation as:

R(λ) =

N∑

i=1

wiPi subject to
N∑

i=1

wi = 1 (9)

In the parlance of convex optimization 8 Equation (9) states
that a given reflectance is a strict convex combination of
the Neugebauer primaries.

3. Selecting Colorants

To aid our discussion we divide the Neugebauer primaries
into two basic types. The first includes the actual colorants
of the printer while the second is any combination of these
as defined by the Kubelka-Munk model described previ-
ously. In the remaining sections of this paper our focus is
directed towards deriving an optimal set of the first type,
i.e. a set of vectors which when used as colorants result in
the best possible reproduction of the spectral data.

3.1. Rotated PCAs as colorants

In this section we assume that the best colorants are a ro-
tated version of the first few principal basis functions span-
ning the space of the spectral data to be reproduced. The
principal vectors describing the space of general reflectance
are characterized by having both negative and positive val-
ues and are often bipolar 5. See Figure 1 where a set of
eight basis functions are shown. Using a limited number
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Figure 1: The fist eight PCA basis functions obtained from the
spectral data of the Esser calibration target.

of PCA basis functions we can approximate a set of spec-
tral vectors as:

R ≈ Bσ (10)

where R is an n × m matrix whose columns are the m

spectral vectors to be reproduced, B is an n × f matrix
encompassing the first f PCA basis vectors describing the
space of R and σ are linear weights.

Evidently, the basis functions in Figure 1 don’t corre-
spond to natural, physically realizable surfaces and inks.
To transform these basis functions such that they are a
closer representation of physical ink spectra the authors
in5 used a ”constrained-rotation engine”. The description
of such a ”constrained-rotation engine” given in 5, does not
infer that the rotation is optimal. To calculate the colorants
based on the assumption made in 5 that the best colorants
are a rotated version of the first principal components with
an added optimality criterion, we used the rigid varimax
rotation described in 11,12. Using a rigid rotation results in a
new set of basis function, which are strictly orthogonal but
different to the original principal components the rotated
basis function are mostly positive. The relation between
the original and rotated basis functions is:

B̂ = BT (11)

where B̂ are the rotated basis vectors and T is an f×f rigid
rotation matrix. The rotated basis functions obtained from
the varimax rotation based on the PCA vectors in Figure 1
are plotted in Figure 2. We see in Figure 2 that the resul-
tant rotated vectors B̂ have negative values, which contra-
dicts the natural properties of colorants spectra. Imposing
a positivity constraint on the output of the varimax rotation
enables us to solve for strictly positive functions which are
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Figure 2: The rotated eight PCA basis functions obtained using
the varimax rotation.

as close as possible to the original basis vectors. Math-
ematically, we can represent the positivity constraint as a
minimization problem of the form:

min ‖Bα − b̂‖2 subject to Bα ≥ 0 (12)

where B are the original basis functions, α are linear weights
and b̂ is the ith rotated basis as described in Equation (11).

Figure (3) shows the rotated version of the basis func-
tions with the added positivity constraint.
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Figure 3: The rotated eight PCA basis functions obtained using
the varimax rotation with an added positivity constraint.
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3.2. Non-Negative Matrix Factorisation

In Section 3.1 we had to solve for the basis function, find
an optimal rotation, and finally, solve for feasible all pos-
itive colorants. We might thus wonder if it is possible to
factorise the colour signal matrix into a set of optimal basis
functions and associated weights as in Equation (10), with
the added constraint that the basis functions are strictly
positive. In13 Buchsbaum and Bloch used a technique
called non-negative matrix factorisation (NMF) to solve
for such a non-negative basis set.

The method is due to Lee and Seung 14, who intro-
duced an algorithm to factorise a strictly positive matrix
such that the bases and the weights are constrained to be
non-negative. Given our non-negative spectral matrix R,
we write:

R ≈ WH (13)

where W is an (n × r) matrix of non-negative basis vec-
tors and H is an (r × m) matrix of positive weights.

In terms of the Euclidian distance the problem we are
trying to solve is:

min
W,H

‖R − WH‖2 subject to W,H ≥ 0 (14)

To solve the minimization in Equation (14) we need to it-
eratively update W and H until we converge to the best
factorization. An example of such an iterative procedure is
discussed in 14.

3.3. A modified NMF

The minimization in Equation (14) factorizes R into two
matrices one containing all positive basis functions and an-
other containing the corresponding positive weights. Hence
if we were to carry out this factorization for a set of spec-
tral vectors then the resultant basis vectors W will be op-
timized to represent the data set. In this sense the columns
of W are the best colorants to be used in the Neugebauer
model described in Equation (8). Unfortunately, the weights
encompassed in matrix H do not necessarily sum to one as
is required in Equation (9). Hence we might wonder if it
is possible to modify the non-negative matrix factorization
algorithm proposed in 14 such that all the elements in the
resultant weight matrix H are strictly positive and the sum
of each column is exactly one. To see how we might pro-
ceed we note that the ith column vector in the data matrix
R can be written as a linear combination of the basis vec-
tors in W and the corresponding weights, where those are
the elements of the ith column of H , i.e.:

r ≈ Wh (15)

Hence to incorporate the added constraint, we can cast
Equation (14) as a minimization problem of the form:

min
h

‖r − Wh‖2 subject to hi ≥ 0 and
i∑

i=1

hi = 1 (16)

The result of the minimization described in Equation (16)
is a weight’s matrix H whose elements are all positive.
Moreover, the sum of each of its columns is exactly one.

4. Implementation

From the minimizations described in Equations (14) and
(16), we note that the procedure of factorizing a matrix
R into two matrices W and H involves an optimization
problem in terms of the two solution matrices, i.e. W and
H . In this section we present a brief description of the
factorization algorithm used by the authors.

1. Starting from a set of all positive spectra R,

2. Let W 0 be an n × r arbitrary positive matrix.

3. Solve the minimization problem in Equation (16) for
H , i.e. minh ‖r − W 0h‖2 subject to the constraints
described in (16)

4. Calculate W i+1 using a gradient descent update rule
15 that reduces the squared distance ‖R−WH‖2. In
this paper we used the following update rule:

W i+1 = W i + µ(R(Hi)T − W iHi(Hi)T ) (17)

where µ is a small positive value.

5. set any negative value in W to zero.

6. If an element in w is greater than 1, divide w by the
maximum value.

7. Iterate until ‖R − WH‖2 is smaller than a user de-
fined tolerance.

5. Results

To test the modified non-negative matrix factorization and
compare its performance with that of the rotated principal
vectors and the conventional NMF, we used the algorithm
to select a set of eight basis functions. Further, we assumed
that the retained basis vectors are the available colorants
and calculate the Neugebauer primaries using the Kubelka-
Munk model. Hence we obtained 28 = 256 primaries. Us-
ing the same procedure we calculated the Neugebauer pri-
maries based on the rotated PCAs and the NMF. The cal-
culations of the basis function for all the techniques were
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based on a set of 264 reflectances obtained from the Esser
calibration target.

The estimated basis functions obtained from the clas-
sical and modified NMF are shown in Figures (4) and (5).
The rotated principal vectors for the same data set are those
shown in Figure (2).
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Figure 4: The best eight non-negative basis functions obtained
from the spectral data of the Esser calibration target.
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Figure 5: The best eight non-negative basis functions obtained
using the new method. The basis functions are based on the spec-
tral data of the Esser calibration target.

Using the basis functions from each method and the
associated Neugebauer primaries we were able to assess
the performance of the bases as colorants to reproduce the
spectral data of the Esser calibration target 16. This chart
was chosen due to its high dimensionality. Knowing that

we are interested in a spectral match we used the spec-
tral Neugebauer model described in Equation (9). Thus,
for each method, namely, the rotated PCAs, NMF, and the
modified NMF we obtained a set of 264 reflectance esti-
mates.

Two metrics were used as a measure of the goodness
of reproducing the Esser calibration target with the esti-
mated colorants, these are the relative means squares error
defined as:

E =
‖r − r̂‖2

‖r‖2
(18)

where r is the actual measured reflectance and r̂ is the esti-
mate. The resultant error for the three methods were sorted
in decreasing order and plotted in Figure (6). As is evi-
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Figure 6: The relative mean square error for the rotated PCA,
the classical and modified non-negative matrix factorization.

dent in Figure (6) the performance of both the classical and
modified NMF algorithms is clearly superior to that of the
rotated PCAs. Further, the colorants chosen by the mod-
ified non-negative matrix factorization technique improve
the maximum error level of the classical NMF.

To assess the goodness of the methods in a percep-
tual space as well as its robustness under varying illumi-
nation conditions we calculated the perceptual difference
∆E∗

ab for all the surfaces under six different illuminants.
The results for the rotated PCAs, the classical, and modi-
fied NMF are tabulated in Tables 1, 2, and 3, respectively.
Clearly, the performance of the non-negative matrix fac-
torization is much better than that of the rotated PCAs.
Further, the modified non-negative matrix factorization al-
gorithm proposed in this paper, is superior to that of the
classical NMF. We especially note that the difference in
the maximum ∆E∗

ab error which is around one half that
achieved with the classical technique under all illuminants.
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Table 1: The mean, median, and maximum absolute ∆E

achieved by assuming that the colorants are a rotated version
of the first eight PCA basis vectors.

Rotated PCA ∆E ∆E ∆E ∆E ∆E ∆E

illuminant D50 D65 F2 F7 F11 A
mean 14.03 13.98 14.87 14.27 14.86 13.93
median 2.77 2.51 2.95 2.55 3.53 2.37
max 97.43 98.11 104.04 99.93 103.39 94.26

Table 2: The mean, median, and maximum absolute ∆E

achieved by assuming that the colorants are the first eight NMF
basis vectors.

NMF ∆E ∆E ∆E ∆E ∆E ∆E

illuminant D50 D65 F2 F7 F11 A
mean 3.03 3.11 3.11 3.21 3.63 2.77
median 0.12 0.10 0.18 0.14 0.44 0.13
max 53.89 56.04 53.39 56.41 58.70 46.91

Table 3: The mean, median, and maximum absolute ∆E

achieved by assuming that the colorants are the first eight modi-
fied NMF basis vectors.

Modified
NMF

∆E ∆E ∆E ∆E ∆E ∆E

illuminant D50 D65 F2 F7 F11 A
mean 1.18 1.19 1.40 1.27 1.54 1.21
median 0.06 0.06 0.18 0.16 0.38 0.06
max 20.42 21.37 21.86 21.57 23.22 19.82

6. Conclusions

In this paper we presented a new method which we call
a modified non-negative matrix factorization. Using this
method we selected a set of colorants to reproduce a colour
target. By comparing the selected colorants with those
achieved using other methods we found that the perfor-
mance of the new techniques is clearly superior to the ex-
isting techniques.
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