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Abstract 

Skin detection is an important preprocessing step for many 
applications. In some cases, reliable detection is needed 
under the real-world's challenging illumination conditions, 
that is, when the prevailing illumination does not correspond 
to the one used in calibration. Our particular goal in this 
paper is to design and study a three-sensor camera for these 
kinds of illumination conditions. This is done in three stages. 
First, a representative set of illuminants is selected from a 
given color temperature range. In the second stage, different 
illumination normalization methods are tested for the camera 
channel model. Simple bell-shaped sensors are tested with a 
chosen normalization method in the last stage. Different 
sensor combinations are evaluated based on their gamut 
ratios for skin and Munsell reflectances.  

Introduction  

Color information about skin is essential for several 
applications. For example, it can be used as a cue for finding 
skin areas from images in human-computer interaction or 
face tracking. Unfortunately, color information is sensitive to 
illumination changes – which are common in many practical 
situations.  

Skin related research has been intense lately. For 
example, Imai et al.1 has studied skin reflectances and 
Martinkauppi and Soriano2 skin color signals (light modified 
by the reflectance of skin). Störring et al.3 has shown in 
normalized color coordinates with one white balancing that 
the track of skin “body” chromaticities follows the curve of 
Planckian illuminants' chromaticities. The area of possible 
skin chromaticities for the one white balancing condition and 
the color temperature range was called the skin locus. Later, 
this skin locus was extended to several white balancing 
cases.4 More about facial skin color modeling for real 
cameras can be found in ref. 5.5  

While the earlier research of skin detection has 
concentrated on skin already perceived by a camera, in this 
study we examine the perception phase of sensors 
themselves. The goal is to find, theoretically, a set of three 

sensors which would be optimal for skin detection under 
challenging illumination conditions. Of course, different 
sensors have been modeled and studied before, for example 
by Vora and Trussell.6 The unique aspect in our approach is 
that the sensors are optimized for detecting skin under 
varying illumination. This approach consists of three 
separate stages.  

In the first stage, a representative set of illuminants is 
selected from a chosen color temperature (CT) range, 2000 K 
– 10000 K. The illuminants are modeled using a spectral 
power distribution (SPD) of blackbody radiators7 (also called 
Planckian radiators). The problem in illuminant selection is 
caused by the nonlinear relationship between SPD and CT. 
Equal CT change at different places of the range produces 
different amounts of SPD change. To improve the situation, 
the use of an inverse color temperature range has been 
suggested and the reciprocal CT values have been shown to 
correspond better to the way humans see SPD variations.8 
Here, we study the chromaticities of the SPDs for a Sony 
camera and their relation to the color temperature range and 
its inverse. Note that the chromaticities are now presented in 
a camera dependent space instead of a human color space 
like u'v'-space.9 

Next, the effect of different illumination normalization 
methods is studied for the common camera channel model. 
Some kind of illumination normalization is necessary 
because the level and power of illuminants varies greatly. 
The most common method has been to scale the illuminants 
so that they have equal values at the wavelength of 560 nm. 
Another method is to scale using Euclidean rule to obtain 
one coefficient for the whole SPD, like Romero et al.10 The 
third possible method is to use the white response as a 
scaling factor. 

Finally, the sensors are simulated by using a simple 
function. The selected illuminant from the first stage is 
normalized using the chosen method from the second stage 
and then used in the calculation of the sensors' responses to 
skin and Munsell reflectances. The size of gamuts are 
calculated and utilized in the evaluation of different sensor 
combinations. 
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Methods 

We have divided the study into three separate stages with 
different goals. The goal of the first stage is to find a 
representative set of Planckian illuminants from the range of 
2000 K -10000 K for further processing. Next, we study the 
effect of normalization methods for illuminants and the 
camera model. The purpose is to select one normalization 
method for the filter simulation. In the last stage, we test 
different simple filters and their combinations for skin 
detection. The results are compared against those from a real 
camera.  

Stage one: The Set of Planckian Illuminants 
Planck's law7 for illumination spectral power 

distribution (SPD) was used because the normalization step 
can be applied separately to the data. The law models the 
light emitted from a heated black body and it has been shown 
to correspond quite well with real illuminants in practice11. 
According to it, the SPD of the emitted light depends on the 
temperature of the black body which is often referred to as 
the color temperature. 

The color temperature is not linearly related to the SPD 
and this is the problem. For example, the SPD of the light 
changes much more between 2000 K and 3000 K than 
between 9000 K and 10000 K. Therefore, it is difficult to 
select a representative set of illuminants based on their color 
temperature. To solve this problem, it has been suggested we 
use inverse color temperature values. We study both 
approaches with the Sony camera in normalized color 
coordinates (NCC). The responses of the Sony camera are 
calculated using eq. 1 which gives plain responses of a 
channel without white balancing: 

∑= )(*)(*)( λλλ oxIX n       (1) 

where X = output for a channel (R, G, or B),  = wavelength 
in nm, I = illumination SPD, n = normalization (0 = 
unnormalized), x = spectral response of a channel (r, g, or b, 
corresponding to X), and o = spectral reflectance of an 
object. Because the chromaticity response for SPDs is 
sought, the object is white with a constant value over the 
wavelength range. The output from eq. 1 is converted to the 
NCC chromaticity coordinates (eq. 2): 
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X
XNCC
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=      (2) 

Note that in Eq. 2 X, R, G, and B are calculated under the 
same illumination for the same object. From the obtained 
three coordinates only two chromaticity coordinates are 
needed because NCC r+NCC g+NCC b=1. These two are 
used to calculate a Euclidean measure m for the SPD, for 
example with NCC r and NCC g in eq. 3.             

( ) ( )22 gNCCrNCCm +=     (3) 

This equation is used to calculate one number value for a 
chromaticity pair as well as the difference between 
chromaticities of two SPDs. 

Stage 2: Normalization of Illuminants 
The channel response of a camera depends on three 

factors, as shown in Eq. 1. In general, the output for a 
channel is white balanced and scaled: 
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where p refers to prevailing, n normalization, and c to 
calibration illumination; v is a constant used to scale the 
results at the wanted output range, like 0-255. As it is easy to 
observe from Eq. 4, the normalization of the illumination 
effects the results. 

Some sort of normalization is typically applied to the 
SPD because the level and power of the illumination SPD 
can vary drastically. The main purpose is to scale the output 
so that the results are comparable under different illuminants. 
Here, we consider four different cases. The unnormalized 
spectral power distribution will, here, be marked by setting 
n=0: 

SPDI =0         (5) 

The most common normalization method is to divide all 
values by the value from an arbitrarily selected wavelength. 

The wavelength is typically selected to be 560 nm. For 
this normalization method, n=1: 

)560(
*1001 nmSPD

SPD
I =           (6) 

The basic idea of this method is to produce equal power at a 
wavelength. To avoid arbitrary wavelength selection, the 
Euclidean normalization has been suggested (n=2): 

∑
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A totally different approach for normalization is to use 
the response of the camera to a white object. The output is 
scaled using the sum of channel response to white WP (I3): 
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Of course, even this coefficient can be scaled to the 
wanted range. When the prevailing illumination is the same 
as the calibration one, the scaling factor WP=1 and it has no 
effect on the results. The WP scales down (or up) only when 
the two SPD does not match and is constant for all channels 
under the conditions. Other possibilities for a scaling factor 
would be the sum of response for two channels or for 
maximum channel value. In general, the effect of 
illumination normalization should disappear when the 
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prevailing illumination is the same as the calibration one 
(p=c, Inc=Inp):   
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where F is a normalization constant calculated for 
normalization method n. If the prevailing and calibration 
illumination differs, then a factor appears which depends on 
the illumination conditions: 
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The normalization dependent factor for cases I1 and I2 is 

not always enough to scale the output to the range [0, 255]. 
To obtain more realistic results, some other options need to 
be considered. The most simplest way is to set the maximum 
output value to be 255. However, this may cause severe 
distortion. Maybe a more sophisticated approach is to the use 
“knee”-function which is found in many real cameras. The 
knee function means that after a certain value (“knee point”) 
the slope for the response to the input is lower. For example, 
we determined the following “knee-function” from the Sony 
manual: 
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where a is a knee factor (from the graph of Sony's manual we 
obtained the value 0.0127). Another option is not to use any 
normalization and use the white coefficient WP to scale 
down the results. 

Illumination normalization or white coefficient can be 
considered as a constant scaling factor and it will cancel out 
if NCC chromaticities are calculated using responses from 
Eq. (4). While it might be tempting to use Eq. (1) with the 
white coefficients, it is not suitable for calculating the 
chromaticities under different calibration / prevailing 
illumination conditions. If the white balancing has been 
modeled with white coefficient WP, it will cancel out in 
chromaticities because the constant white coefficient WP 
will disappear. 

Stage 3: Simple Sensors and Their Gamuts 
In the last stage, the sensors are modeled with Matlab's 

gbellmf-function. It produces simple curves as shown in Fig. 
1. The curves used in simulation have one peak and 
bandwidth from 30 nm (sensor 3) to 150 nm (sensor 15). 
Additionally, we use an impulse function which has value 
one at a wavelength and is referred to as sensor 1. The 

position of a sensor in the visible wavelength range is 
referred to by its peaks position. 

The camera simulation also uses the results obtained 
from the two earlier stages. The representative illumination 
set is obtained from the first stage and the illumination 
normalization method from the second stage. Using this 
information, the responses of different sensors and their 
positions are simulated for skin and Munsell reflectances. 
The gamut of skin and Munsell sets is calculated for 
different sensor combinations using Matlab's convhulln-
function. The evaluation of sensor combinations is based on 
the size of the gamut. The goal is to find three sensors which 
have a minimum skin gamut/Munsell gamut ratio. The 
results are compared to those from the Sony camera. 

 

 

Figure 1. Simple curves generated by Matlab's gbellmf-function. 
The sensors numbers 3, 5, 7, 9, 11 and 15 are shown. The 
bandwidth of sensors 3-15 can be obtained by multiplying the 
sensor number by 10 nm.  

Results 

Stage 1: The Set of Planckian Illuminants 
The responses of a Sony camera are calculated using Eq. 

1 for SPDs from 2000 K to 10000 K (by 100 K steps). The 
obtained RGB values are converted to NCC chromaticities 
using Eq. 2. The upper row of Fig. 2 shows the NCC r,g, and 
b chromaticities as a function of color temperature and its 
inverse. As can be observed from the upper left image, the 
chromaticities are a nonlinear function of color temperature. 
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Using the inverse range, the nonlinearity decreases but still 
not enough. For example, the difference in the inverse of 
9000 K and 10000 K is 0.0116 for NCC r, 0.0071 for NCC b 
and 0.0208 in their combinations in Euclidean distance. With 
the same amount of change from the inverse of 2000 K, the 
values are 0.0097, 0.0040 and 0.0105, respectively. Note that 
the difference between 2000 K and 3000 K is much bigger, 
0.1665 for NCC r, 0.0930 for NCC b and 0.1912 in the 
Euclidean sense. Therefore, neither color temperature range 
nor its inverse is used for illumination selection. To solve 
this situation, the NCC chromaticities can be directly used 
for determining the wanted illuminants. The left image of the 
lower row of Fig. 2 shows the NCC b vs. NCC r. The 
linearity is not surprising because the SPDs' changes occur 
mainly in the red and blue regions. The right lower image 
shows the chromaticity pair combined into one coefficient 
value using Eq. 3. We use the coefficient from NCC g and b 
because it increases as a function of color temperature. The 
set of ten illuminants is selected so that they have an 
approximately equal distance between their coefficient 
values. The color temperature values for these illuminants 
are 2000 K, 2200 K, 2500 K, 2800 K, 3300 K, 3900 K, 4800 
K, 5900 K, 7500 K and 10000 K and they are referred to by 
numbers 1-10. 

 

 

Figure 2. NCC chromaticity response of Sony camera for different 
Planckian illuminants. The upper row shows the chromaticity 
value as a function of color temperature (left image) and its 
inverse (right image). Neither relation is linear. The left image on 
the lower row shows the SPD change in NCC r and NCC b 
coordinates and the right one displays the Euclidean measure 
calculated for different chromaticity pairs. 

Stage 2: Normalization of Illuminants 
First, we compare chromaticities obtained from real 

camera measurements and camera simulations with different 
normalization methods. For this purpose, we have taken 
images of a Macbeth chart with a Sony camera under two 
Planckian like light sources, Horizon (H) 2300 K and A 2856 
K. The comparison was made only with those color patches 

which had 90% of their values between 10 and 245 for all 
four prevailing light and calibration light cases. The results 
are shown in Table 1. The mean and standard deviation are 
calculated from absolute differences. The worst results were 
obtained by using white coefficient WP and Eq. 1 which was 
not used in any further tests. The performance of the other 
three normalizations (Eq. 4 and I1, I2, and WP) was equal.  

For the three remaining normalization methods, we 
compared the gamuts which they produced for the Munsell 
reflectances under ten illuminants with color temperatures 
obtained from the previous stage. For the common 
normalization (I1) and Euclidean normalization (I2), the knee-
function as presented in Eq. 11 was used to limit the output 
at the wanted range of 0-255. The evaluation was based on 
their gamut sizes from Matlab's convhulln-function 
(implementation of Qhull). The results for the normalization 
by 560 nm are presented in Fig. 3. It was noticed that the 
biggest relative size does not occur for the calibration 
illuminant as one might expect. This was also true for the 
Euclidean illumination normalization method (see Fig. 4). 
But when the white coefficient WP normalization was 
utilized, the calibration illuminant had the biggest volume 
size, as demonstrated in Fig. 5.  

 
 

Table 1. Simulated vs. Real Chromatic Responses. 
Difference Case Light: 

prevailing / 
calibration 

Mean Standard 
deviation 

AA 0.148 0.033 
AH 0.117 0.028 
HH 0.250 0.034 

Eq. 1, 
WP 

HA 0.269 0.044 
Others AA 0.038 0.013 
 AH 0.048 0.016 
 HH 0.041 0.018 
 HA 0.041 0.018 

 

 

 

Figure 3. Relative sizes of Munsell gamuts are visualized for the 
common normalization. The calculations were done under one 
white balancing conditions marked with an open diamond in the 
images. The biggest relative size does not always co-incide with 
the calibration illuminant (CT). 
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Figure 4. The relative sizes of Munsell gamuts for Euclidean 
normalization produce the same phenomena as the common 
normalization: the calibration illuminant does not have the biggest 
gamut size. 

 

 

 

Figure 5. Normalization by the white coefficient produced a match 
between the calibration illuminant and the biggest volume size. 

 

Because the mismatch between the biggest volume size 
and calibration was unexpected I1 and I2, we visualized their 
gamuts in RGB coordinates. As Fig. 6 displays, the gamut 
size increases in some cases, when the calibration illuminant 
is not the same as the prevailing one. For the Euclidean 
normalization, the sizes of the gamuts appeared similar. 

We also computed the size of skin and Munsell gamuts 
for each calibrated case (canonical cases) and their non-
calibrated cases. Figure 7 shows the results for the WP 
normalization. The I1 and I2 normalizations predicted the 
biggest volume for the lower color temperatures. These two 
normalizations were not used for the last stage because of 
this and because they need the knee-function (the general 
applicability of the knee is not known).  

 

 

Figure 6. The gamut in the upper image for canonical case is 
smaller than the one in the lower image for which the prevailing 
and calibration illuminant are not the same. They are both 
obtained using the common normalization. Note also the effect of 
knee in the lower image. 

 

 

Figure 7. The gamut are calculated for each calibration sets. One 
set consists of one canonical case and nine uncanonical cases. The 
maximum sizes for Munsell and skin (upper row) is predicted to be 
at illuminant 5 (3300 K). The ratio between gamut sizes is shown 
in the lower row and it is quite constant.  
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Stage 3: Simple Sensors and Their Gamuts 
The gamut sizes for different sensor combinations are 

calculated for one calibration case (one canonical case and 
nine uncanonical cases) and for all calibrations. Table 2 
presents the triplets with maximum gamut sizes of Munsell 
and skin sets for different sensors (the position of the sensor 
is fixed with their peak position wavelength) when only one 
calibration is used. For the maximum size, the color 
temperature seems be the same with a Sony camera and most 
of the simulated sensors. The minimum value for the ratio 
between skin and Munsell gamuts were examined and the 
sensor combinations of these are presented in Table 3. When 
minimum value occurs at sensors very near each other, it 
might be better to use some other criteria. 

The gamut results for all cases are shown in Tables 4 
and 5. Note peaks' position for minimum gamut values.  

 

Table 2. Sensor Combinations for Maximum Gamut 
Size. 

Sensor  Position of sensor 
triplets for skin at CT 

Position of sensor 
triplets for Munsell at 

CT 

1 400 590 700, 3900 K 420 530 700, 3300 K 

3 400 530 700, 3300 K 430 540 700, 3300 K 

5 400 540 700, 3300 K 430 540 700, 3300 K 

7 400 550 700, 3300 K 430 540 700, 3300 K 

9 
400 550 700, 3300 K; 
 400 560 700, 3300 K 

430 540 700, 3300 K 

11 400 550 700, 3300 K 430 540 700, 3300 K 

13 400 550 700, 3300 K 430 540 700, 3300 K 

15 400 550 700, 3300 K 430 540 700, 3300 K 

 

Table 3. Sensor Combinations for Minimum Ratio 
Value. 

Sensor Positions of sensor triplets and CT 

1 420 550 560, 2000 K 

3  420 550 560, 2000 K 

5  530 540 550, 2800 K;  530 540 550, 3300 K 

7 520 540 550, 2200 K 

9  510 520 530, 2800 K, 3300 K, 3900 K 

11 
520 530 540, 2500 K, 2800 K, 3300 K, 3900 
K, 4800 K 

13 
520 530 540, 2000 K, 2200 K, 2500 K, 2800 
K, 3300 K, 3900 K, 4800 K, 5900 K, 7500 K 

15 
520 530 540, 2000 K, 2200 K, 2500 K, 2800 
K, 3300 K, 3900 K, 4800 K, 5900 K 

Table 4. Sensor Combinations for Maximum Gamut 
Size. 

Sensor  Sensor triplets for skin Sensor triplets for 
Munsell 

1 470 610 700 430 530 700 

3 470 610 700 430 540 700 

5 470 600 700 440 550 700 

7 470 600 700 440 550 700 

9 470 590 700 440 550 700 

11 470 590 700 440 550 700 

13 470 590 700 440 550 700 

15 470 590 700 440 550 700 

 
 
The optimal sensor combination in maximum gamut 

size sense depends on whether one or several calibrations are 
used (Tables 2 and 5). The minimum gamut size by itself 
might not be the best evaluation criteria for selecting optimal 
sensors for skin detection. 

Conclusion 

The design of a simple, 3-sensor camera was studied in three 
stages: selection of illuminants, selection of illumination 
normalization method, and evaluation of the obtained sensor 
responses.  

The illuminants for the simulation were selected based 
on their Euclidean chromaticity value which should 
guarantee their representativeness in the color temperature 
range of 2000 K-10000 K. The illumination normalization 
issues were considered and one based on a white scaling 
factor was used in sensor simulations for Munsell and skin. 

The combination of sensors which produce the 
maximum gamut size was found to be different for skin and 
Munsell sets and depends on whether one or several 
calibrations are in use. The minimum ratio value between 
gamuts seems to suggest very close positions for sensors and 
this criteria by alone might not be good for selecting an 
optimal sensor set for skin detection. 

 

Table 5. Sensor Combinations for Minimum Gamut Size. 
Sensor Sensor triplets 

1 550 570 580 

3 540 550 560 

5,7 530 540 550 

9 440 450 460 

11 450 460 470 

13, 15 440 450 460 
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