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Abstract

In imaging applications, computation is often carried out
in a derivative (gradient) domain. For example, we can at-
tenuate small image differences by thresholding the gradi-
ent and then reintegrate. Unfortunately, the reintegration is
an expensive task. Reintegration is often carried out in 2D
(usually using 2D Fourier transform) or through multiple
1D paths as in Retinex. In this paper, we show that using
a small number of non-random paths, each of which is a
tour the size of the image, is an effective and fast method
for reintegration.

We apply our method to the problem of reintegrating
a shadow free gradient derivative image. Results are com-
petitive with those obtained using 2D methods. Yet, the
reintegration presented here is an order of magnitude quicker.

Introduction

In imaging applications it is common to work in the gradi-
ent domain. For example, we can remove small changes in
image intensity by thresholding image derivatives and then
reintegrating the image. One of the effect of such a pro-
cess is to reduce the dynamic range of an image (a topic
of much current interest to the imaging community [1]).
Unfortunately, reintegrating an image from its derivatives
(i.e. edges) is not easy.

The complexity of reintegration is due to there being
two derivatives at each pixel location,dz

dx and dz
dy (wherez

denotes image brightness). We must recoverz(x, y) such
that if we differentiate the function, we re-generate the
derivatives. In fact, in general the problem is ill-posed (be-
cause we have 2 derivatives per pixel) and the reintegration
involves minimizing some least square system. Typically,
this involves solving a Poisson equation, which normally
involves using the 2D Fourier transform [2].

In Retinex [3,4] reintegration is made easier by using
paths. If we have a signaldz

dx , then we can recoverz(x) by
computing

z(x) + c =
∫

S

dz

dx
dx (1)

over the path. And since the number of derivatives equals
the number of brightness, the problem is well posed (though
we note that we have an unknown constant of integration).
But different random paths result in different signals being
recovered.

zi(x) + ci =
∫

Si

dz

dx
dx (2)

whereSi is some path andx indicates pixels located along
the path. Thus, we need to average the results taken over
many paths. To achieve reintegrated images that look sen-
sible, previous work has proposed that thousands of ran-
dom paths need to be calculated, making this path-based
approach computationally expensive.

In this paper, we consider an alternate, fast, reintegra-
tion strategy. Simply put, we generate global paths that
visit each pixel location once (and once only). We then
process a small number (say 16) of global reintegrations
and average the results.

We examine our method in the context of the shadow
removal problem. We show that we can reintegrate shadow-
free images in 1-D with generally relatively few artifacts.

Background

Let I denote an image. The gradient of the image,∇I is

∇I = (
∂I

∂x
,
∂I

∂y
) (3)

Now, suppose we threshold the derivatives using a function
T (∇I) such that

T (∇I) = 0 if |∇I| < θ

= ∇I otherwise

The question we wish to answer is can we recoverI from
T (∇I)? Unfortunately, the gradient of a potential function
(such as a 2D image) must be aconservative fieldin order
to be integrable [1,5]. Given that this is usually not the
case, one has to approximate the integral by a mean square
method. This amount to solving a Poisson equation of the
form

∇2I = div(T(∇I)) (4)
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Where∇2 is the Laplacian operator∇2I = ∂2I
∂x2 + ∂2I

∂y2 and

div(T (∇I)) = ∂(T (∇I))x

∂x + ∂(T (∇I))y

∂y
Solving a Poisson equation is not easy. We must define

boundary conditions (what happens at the edge of an im-
age) and then typically use the inverse Fourier transform
as a tool for recoveringI. Moreover, it seems strange that
we took the derivatives of the derivatives in computing the
divergence. This needs to be done so we have one differ-
ential measure per pixel since this makes the reintegration
problem well-posed. On the other hand, reintegrating the
image along a path is a well posed problem given that by
definition there is only one derivative per pixel. To keep the
problem well-posed and complete however, the path has to
go through every pixel once and once only. Letp be a path
of lengthn, wheren is the number of pixels in the image
I. Furthermore, letT (∇I) be the thresholding function as
previously defined andpi be theith pixel visited alongp.
We can then recover the imageI ′ by reintegratingT (∇I)
alongp, i.e.

I ′pi
=

n∑

i=1

T (∇I)pi (5)

This is the discrete variant of eq. 1. From a complexity
point of view, this approach is very simple, given that all
what the algorithm has to do to reintegrate the image is a
summation of lengthn. A single path is however not suf-
ficient to allow good enough reconstruction. The problem
here is that the effect of a single local threshold propa-
gates over the entire image. If the threshold is erroneous
(in some sense), this error propagates alongp, see Fig. 5
for an illustration.

When this does not occur though, we encounter the
problem of error propagation (illustrated in figure 5). Let
pt be a location where∇I was thresholded. Given the
method used to reintegrate the image, as shown in eq. 5,
we see that the “error” induced by the thresholding atpt

will be propagated throughout the image alongp for all
pi such thati > t. In order to control and minimize
such errors, we propose the use of several different paths.
Those paths will encounter gradient modifications at dif-
ferent times and averaging the values for each pixel ob-
tained through all paths will yield to better visual results.

The other major difficulty of this method (that will be
thoroughly discussed in section 3) is to find a suitable path
along which the image can be reintegrated. Retinex for
instance makes use of a lot of different paths of length
l << n in order to extractglobal information fromlocal
paths.

SupposeI(x, y) denotes aN×M image. In the classic
Retinex implementation, let there bek paths of average
length log(NM ). The the reintegration has a complexity
of

O(NMklog(NM)) = O(NMklogN + kNMlogM) (6)

Figure 1: Clockwise, a schematic representation of an image; the
associated grid graph; an hamiltonian circuit within the graph;
the corresponding path in the image.

Moreover, paths in Retinex are random and that further
adds to the implementation complexity.

Here we propose a reintegration method that can be
carried out byk global (non-random) paths and so the com-
plexity is

O(kMN)

Moreover, the global paths are defined a priori and that
simplifies reintegration. From complexity considerations
above, the global path reintegration method can be around
quite faster than the standard Retinex.

Hamiltonian Circuits as Paths

To be able to reintegrate the image along a path, the path
must have two important properties. First, it must pass
through every pixel. Then, we also have to make sure that
no pixel is visited twice in order to ensure continuity. If
those two conditions are not met, we would have either a
incomplete image (some pixels are omitted) or a decision
problem (if the same pixel is visited twice but leads differ-
ent values, which one should be kept?) and this leads to
artifacts in the image.

Let us consider an image to be a grid graph, with pixels
being vertices and edges representing the 4-connectivity
between neighboring pixels, the problem of finding a com-
plete non-intersecting path within the image can be liken to
finding an Hamiltonian circuit in the corresponding graph.
Figure 1 illustrated the link between image, grid graph and
hamiltonian circuit. Unfortunately, finding an Hamiltonian
circuit in a graph is aNP-completeproblem, meaning that
there exist no method to find such a circuit in a polynomial
time [6,7].
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Figure 2: Example of raster paths, vertical (left) and diagonal
(right)

Figure 3: Example of fractal paths in a grid graph. Path given
by the hilbert generator (left) and the path given by the moore
generator (right)

We therefore restricted ourselves to some well known
circuits that can be found in such grid graphs. Exam-
ples discussed here are the raster-type paths and fractal-
type paths. An insight into how to create random non-
intersecting paths is also provided.

Raster Paths

Raster paths are the simplest hamiltonian circuits available
for grid graphs. They can be either horizontal, vertical or
diagonal. An illustration of such paths can be found in
figure 2. Due to their very nature though, they will prop-
agate errors along straight lines, thereby creating visually
significant artifacts. They prove however useful enough in
practice and averaging the results over a certain number of
those paths does attenuate the artifacts.

Fractal Paths

Hamiltonian circuits having a fractal nature in grid graphs
are usually referred to in the literature asplane filling (or
Peano) curves, see [8] for some examples. The major in-
terests of such curves, outside of their fractal nature, are
their easiness of construction as well as the guarantee that
they won’t self-intersect as long as they are finite. See fig-
ure 3 for Hilbert and Moore paths. Different generators
exist, but for our purposes as well as our type of graph, we
use two different generators: Moore and Hilbert construc-

Figure 4: The core of our shadow removal experiment. The orig-
inal image (left) and the corresponding intrinsic image (middle)
and shadow mask (right).

tions [8,9]. It has been argued that Hilbert’s generator was
more efficient [10], but we use both in order to minimize
the artifacts that a single construction would induce.

Random Paths

Ultimately, raster and fractal paths are just two subclasses
of Hamiltonian circuits. What we would really be inter-
ested in would be globally random Hamiltonian circuits.
Because ultimately any regular path will have regular arti-
facts propagated during reintegration. Probabilistic meth-
ods do exist in the literature [11] and we are currently in-
vestigating applying those.

On another hand, results obtained by reintegrating the
images with as little as 10 paths (raster and fractal type)
indicate that very competitive images could be found with
as few as 10 global paths.

Shadow Removal Experiment

In this paper, we want to apply the results learned so far
about image integration to the problem of shadow removal.

The framework we use to remove shadows is mainly
based on the one proposed by Finlayson and al in [12]. We
use invariant images (as defined in [13]) to findmaterial
edges in the image and a thresholding operator to distin-
guish between material and shadow edges. Figure 4 shows
the three main components needed for shadow removal,
the original image (left), the intrinsic image (middle) and
the derived shadow mask (right). The shadow mask is de-
fined as the locations where an edge is present in the orig-
inal image but absent in the intrinsic image. It appears im-
mediately that the shadow mask is far from being perfect.
Indeed, they usually are noisy and the shadow regions are
often “open”. Errors induced by such shadow masks will
be very dependent on the chosen path, hence the need for
several paths and the relative optimality of averaging them.

Our shadow removal algorithm works as follows: letp
a path of lengthn (number of pixels in the imageI). Then,

∇Ipi = Ipi+1 − Ipi

Additionally, let S be the shadow mask image andθ
the threshold above which a pixel ofS is considered to be
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Figure 5: Reintegration using 1 raster path (top left), 1 fractal
path (bottom left), 8 raster paths (top right) and 8 fractal paths
(bottom right). As it can be seen from that example, increasing
the number of paths dramatically improves the quality of the re-
sults.

a shadow pixel. The gradient of the image at those points
will be large. In order to remove the shadows, this gradient
has to be set to 0. This will ensure that the previous value
of the image is propagated, hence eliminating the shadow
edge. Further down the line, inside the shadow region, the
gradient becomes usable again. In other words, we modify
∇I such that

∇Ipi = 0 if Spi > θ

= ∇Ipi otherwise

The reintegration ofI alongp is then done by follow-
ing eq. 5. As mentioned in sections 2 and 3 however, rein-
tegrating along a single path will induce errors that will
propagate in the same direction as the path.

Additionally, image are recovered up to a constant. The
reintegration constant (see eq. 1) can be solved for by tak-
ing the top 5% of pixels values in each band (R, G and B)
of the original image and rescaling the values of the output
image accordingly.

Results

The whole shadow removal process has been tested over
real images using 4 different paths. 2 fractal paths (moore
and hilbert) and 2 raster paths (horizontal and diagonal).
Using square images, we were able to use rotation prop-
erties to obtain 32 potential “different” paths. Figure 5

Figure 6: Example of recovering a shadow-free image. The path
used are a horizontal raster and a hilbert fractal path with all ro-
tations (i.e. 16 paths). Top left: Original Image; Top right: the
shadow mask; Bottom left: the image obtained after reintegra-
tion; bottom right: the image obtained after color rescaling

demonstrates the need for several paths. On the left side
we have integration for a single path, raster (top) and frac-
tal (bottom). On the right hand side, we have the reinte-
gration for the 8 paths of the same type (using rotation and
symmetry properties) and averaging the results. As it can
be seen from the results, using the average values over sev-
eral paths greatly improves the quality of the output image.

It can however be noticed that “structural” artifacts re-
main. Most notably, this can be attributed to the fact that
all paths are symmetrical. Hence, even by averaging them,
those artifacts can be seen. This can to a certain extent be
improved by using different type of paths, but some artifact
will remain nevertheless. The currently investigated solu-
tion is to use asymmetrical random hamiltonian circuits to
reduce the visibility of artifacts.

Figures 6 and 7 are two results obtained by this method.
On the top line are the original image and the correspond-
ing shadow mask, the bottom line being composed of the
output image (left) and the rescaled one (right). Looking at
the results, one will notice that the optimum results are ob-
tained with different paths. Once again, this is mostly due
to how well the geometry of the paths fit with the image
structure. Figure 8 compares results obtained with our 1D
method and the current optimal 2D reintegration. As it can
be expected, reintegration from Poisson equation performs
visually better than our 1D method. It should however be
noted that the 1D reintegrated image is as shadow free as
its 2D counterpart. Indeed, the major difference between
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Figure 7: Example of recovering a shadow-free image. The path
used are a horizontal raster and a diagonal raster(again, with all
rotations i.e. 16 paths). Top left: Original Image; Top right: the
shadow mask; Bottom left: the image obtained after reintegra-
tion; bottom right: the image obtained after color rescaling

Figure 8: Comparison between 1D and 2D reintegration, the
shadow is properly removed in the 1D reintegrated image even
though structural artifacts remain. Top left: Original Image; Top
right: the shadow mask; Bottom left: 1D reintegrated image; Bot-
tom right: 2D reintegrated image

the two images is to be found in the artifacts each method
produces. In the 2D case, there is a definite smudging on
the shadow boundaries and the shadow region looks some-
what artificial. On the other hand, the 1D reintegrated im-
age exhibits structural artifacts due to the paths construc-
tion. Nevertheless, these results are very promising con-
sidering that they can be obtained in real time.

Conclusion

Two main results have been presented. First, for certain
purposes such as shadow removal, image reintegration can
be simplified to a 1-D problem. This reduction in dimen-
sionality allows for a much less complex and costly rein-
tegration procedure given that only a certain number of
summations of lengthn have to be computed instead of
the solving of a Poisson equation.

Second, we also show that error propagation can be
controlled to a certain extent by using different path types
and averaging their outcome. The paths that have been
used for these experiments are all part of Hamiltonian cir-
cuits.The proposed method is then applied to the shadow
free image reintegration problem. Results are compared to
the (optimal) 2D reintegration.

We are currently investigating possibilities for a more
general solution that should take care of the visual artifacts
occurring after reintegration.
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