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Abstract

Digital cameras are often used as colorimeters where the
task is to predict as accurate colorimetric values of an ob-
ject as possible from camera responses of the object. It has
been widely recognized that one of the factors that makes
color prediction less straightforward is metamerism.

This paper addresses a novel color prediction method
that utilizes a population of spectral reflectance samples of
real objects based on which the effect of metamerism is
taken into consideration. The results of computer simu-
lations show that the proposed method is able to achieve
higher performance than the conventional matrix-based
color prediction method.

Introduction

As the performance of digital cameras has been signifi-
cantly improved in terms of both image quality and spatial
resolution, they have been incorporated into a sequence of
color reproduction systems where the critical issue is the
consistency of color from the original scene through the
color rendering devices. The task of manipulating digi-
tal camera images in this case is to predict colorimetric
values of an object in the scene as accurately as possible
from camera responses of the object. It has been widely
recognized that one of the factors that makes color predic-
tion less straightforward is metamerism. That is, a pair of
surface reflectances are recorded as the identical camera
responses but have different colorimetric values due to the
fact that spectral sensitivities of a camera generally differ
from those of the human visual system. Another aspect of
metamerism is that the illuminant used to capture an image
is not necessarily the same as the illuminant under which
the color of the object should be predicted.

It is obvious that the simplest way of color prediction
using a 3× 3 transformation matrix that relates camera re-
sponses with CIE tristimulus values fails to achieve accept-
able performance due to metamerism except in some spe-
cial cases. Although attempts have been made to improve
the color prediction accuracy by adding higher polynomi-
als and a constant term to the transformation matrix,1, 2 it

does not mean that such approaches take metamerism into
account effectively.

This paper describes a new method to predict the color
of an object from digital camera responses in consideration
of metamerism and evaluates its performance compared
with a conventional color prediction method by means of
computer simulations.

Color Prediction Methods

Matrix-based Color Prediction

The color of an object is specified as Eq. (1) by evenly
sampling spectral data at N points over the visible range:

tXYZ = FT
XYZEvr (1)

where tXYZ is a 3 × 1 vector of CIE tristimulus values,
FXYZ is an N×3 matrix of CIE color matching functions,
Ev is an N × N diagonal matrix of the spectrum of the
illuminant under which the object is observed, and r is an
N × 1 vector of the object reflectance.

Sensor responses of the object from a three-channel
camera can be expressed as:

tRGB = FT
RGBEtr, (2)

where tRGB is a 3× 1 vector of the sensor responses, typ-
ically R, G, and B, FRGB is an N × 3 matrix composed
of three camera sensitivities, and Et is an N ×N diagonal
matrix of illuminant spectrum employed for image captur-
ing.

The conventional color prediction utilizes a linear
transformation as described in Eq. (3):

t̂XYZ = L3×3tRGB , (3)

where t̂XYZ is the estimation of the tristimulus values and
L3×3 is a 3 × 3 transformation matrix. There are two pri-
mary ways of theoretically determining the transformation
matrix L3×3.

The first method is based on the characteristic of re-
flectance spectra. Suppose a collection of reflectance spec-
tra spans a subspace whose dimension is no more than
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three. Principal component analysis3–5 is most often em-
ployed to determine orthonormal basis vectors bi (i =
1, 2, 3) in this space that enables any spectrum to be speci-
fied as a linear reflectance model3–11 represented in Eq. (4):

r =
3∑

i=1

wibi = Bw, (4)

where wi is a coefficient for the basis vector bi, B is an
N × 3 matrix composed of the basis vectors, and w is a
3× 1 vector of the coefficients. From Eqs. (2) and (4),

tRGB = FT
RGBEtBw. (5)

Since the matrix product FT
RGBEtB yields a 3× 3 square

matrix, the reflectance vector r can be derived from
Eqs. (4) and (5):

r = B(FT
RGBEtB)−1tRGB . (6)

Substituting Eq. (6) for Eq. (1), the 3 × 3 transformation
matrix L3×3 is defined as:

L3×3 = FT
XYZEvB(FT

RGBEtB)−1. (7)

The shortcoming of this model is that object spectra exist-
ing in the real world span a more than three-dimensional
subspace. Under the assumption of Eq. (4), tristimulus
values tXYZ can be uniquely derived from tRGB because
there is only one reflectance spectrum that gives the spec-
ified sensor responses tRGB . However, in case more than
three dimensions are required for the complete spectral re-
construction, a unique solution cannot be found since mul-
tiple reflectances that yield different tXYZ could give the
same tRGB (those reflectances are referred to as camera-
metamers hereafter). It has been found that the spec-
tral reconstruction accuracy of the three-dimensional lin-
ear reflectance model is comparatively high for some spe-
cific object categories such as human skin and vegeta-
tion.10, 12, 13 More than three dimensions are required to
achieve sufficient accuracy for other types of objects.7, 8, 11

The second approach focuses on the spectral property
of both the human perception and the image capturing sys-
tem. If FXYZEv spans the same three-dimensional sub-
space as FRGBEt, FXYZEv can be expressed as a linear
transformation of FRGBEt:

FXYZEv = L3×3FRGBEt. (8)

In this case, there could be multiple spectral reflectances
corresponding to the specified tRGB . However, it does
not matter since they all give the same tXYZ . Generally,
Eq. (8) hardly holds perfectly due to the practical limi-
tations in manufacturing the desired camera sensitivities.
Furthermore, even if it is possible to fabricate the camera

sensitivities optimal for a fixed pair of viewing and taking
illuminants, the lighting conditions are likely to change in
the use of digital cameras and Eq. (8) no longer holds. In
such cases, it is impossible to relate the specified tRGB

with a unique tXYZ because of camera-metamerism. The
transformation matrix L3×3 is therefore determined by the
least-squares method:

L3×3 = FT
XYZEv(FT

RGBEt)T

×{FT
RGBEt(FT

RGBEt)T}−1. (9)

Color prediction accuracy based on the transformation
matrix defined in Eq. (9) depends on how far the sub-
space spanned by FRGBEt departs from that spanned by
FXYZEv . Vora and Trussell have introduced µ-factor,14 a
metric for the colorimetric evaluation of image capturing
systems, as an extension of Neugebauer’s q-factor.15

Since either model has a prerequisite condition which
is not always satisfied, the transformation matrix L3×3

is sometimes determined by the linear regression method
using a set of color samples whose tXYZ and tRGB are
known. Cross terms and a constant term are also often in-
troduced to the regression procedure in order to compen-
sate for the nonlinearity between tRGB and tXYZ :

t̂XYZ = L3×8 [R, G, B, RG, GB, BR, RGB, 1]T ,
(10)

where L3×8 is a 3 × 8 transformation matrix. Although
this model can to some extent improve the performance of
color prediction, there still remains a defect that it does not
efficiently minimize the effect of camera-metamers.

High-Dimensional Reflectance Estimation

As indicated in the previous section, taking account
of camera metamerism is one of the essential factors
to improve color prediction accuracy. Since camera
metamerism is caused by the higher-dimensional re-
flectance subspace, it is reasonable to extend the linear re-
flectance model to n dimensions:

r =
n∑

i=1

wibi = Bw. (11)

In case n > 3, both the basis matrix B and the coefficient
vector w can be divided into two parts as follows:

B = [Bl, Bh],
w = [wT

l , wT
h ]T,

Bl = [b1, b2, b3],
Bh = [b4, b5, · · · , bn],
wl = [w1, w2, w3]T,

wh = [w4, w5, · · · , wn]T.
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Using these definitions, the sensor response vector tRGB

in Eq. (2) can be expressed by Eq. (12):

tRGB = FRGBEt [Blwl + Bhwh]
= FRGBEtBlwl + FRGBEtBhwh

= Mlwl + Mhwh, (12)

where Ml = FRGBEtBl and Mh = FRGBEtBh. Since
Ml is a 3× 3 square matrix, Eq. (12) can be rewritten as:

wl = Ml
−1(tRGB −Mhwh). (13)

The estimation of the spectral reflectance r̂ that gives the
sensor response vector tRGB is therefore described as:

r̂ = Blwl + Bhwh

= BlMl
−1(tRGB −Mhwh) + Bhwh

= (Bh −BlMl
−1Mh)wh

+BlMl
−1tRGB . (14)

For a given sensor response vector tRGB , only the vec-
tor wh is the variable term in Eq. (14) because the ma-
trices Bl, Bh, Ml, and Mh are all known. Defining
P = Bh−BlMl

−1Mh and q = BlMl
−1tRGB , Eq. (14)

can be simplified as Eq. (15):

r̂ = Pwh + q. (15)

Equation (15) means that an arbitrary input wh yields
a camera metamer r̂ that gives the sensor responses tRGB .
Allowing vector wh to take m discrete inputs wh,j (j =
1, 2, · · · , m), each input leads to a camera metamer r̂j .
The CIELAB coordinates L∗j , a∗j , and b∗j can be calculated
for each r̂j and their mean values can be considered to
represent the expected object color.

However, it is not guaranteed that the reconstructed
spectrum r̂ really exists as a spectral reflectance of the ob-
ject. For instance, probability of existence of a spectral
reflectance is zero if it has a value smaller than 0 or greater
than 1. In addition, even if 0 ≤ r̂ ≤ 1, the probability
of existence should be estimated lower for r̂ whose char-
acteristics (steepness of the spectral curve shape, number
of principal peaks, etc.) significantly departs from those of
the real spectrum of the object. It is reasonable to appropri-
ately determine weighting factors ωj (j = 1, 2, · · · , m) in
consideration of the probability of existence of the spectral
reflectance r̂j . With those weighting factors, Eq. (16) rep-
resents the expected colorimetric values of the object:

L̂∗ =
1
Ω

m∑

j=1

ωjL
∗
j ,

â∗ =
1
Ω

m∑

j=1

ωja
∗
j , (16)

b̂∗ =
1
Ω

m∑

j=1

ωjb
∗
j ,

Ω =
m∑

j=1

ωj .

It is desirable to determine the weighting coefficient
ωj based on some spectral characteristics that real objects
possess. If the population of spectral reflectance samples
used to construct the linear reflectance model of Eq. (11)
has a certain tendency that is unique for objects having
the same kind of attribute (natural objects, textiles, paints,
etc.), ωj can be determined based on that tendency.

Defining coefficient vectors of the population sam-
ples obtained by the n-dimensional linear model as
ẇ1, ẇ2, · · · , ẇp, these vectors can be considered as p
points distributed in the n-dimensional space. If the fea-
ture of the population samples appears in this distribution,
the weighting factor ωj that reflects the probability of ex-
istence of the spectral reflectance r̂j can be determined by
comparing this distribution with the coefficient vector wj

which is used to derive r̂j . The coefficient vector wj here
is defined as:

wj =
[

wl,j

wh,j

]
, (17)

where wl,j can be obtained by giving wh,j to Eq. (13).
Let sj,k denote the similarity of wj to ẇk, the coeffi-

cient vector of the kth population sample:

sj,k = exp

{
−

n∑

i=1

(ẇk,i − wj,i)2

σ2
i

}
, (18)

where ẇk,i and wj,i are the ith element of the coefficient
vectors ẇk and wj , respectively, and σ2

i is the variance
of ẇi for the entire population samples. The similarity
sj,k becomes 1 when two coefficient vectors ẇk and wj

are equal and decreases to 0 as the distance between two
points increases. The variance σ2

i is used because the range
of ith coefficient ẇi depends on the dimension i. Since the
coefficient vector ẇk is derived from spectral reflectance
samples that really exist, sj,k can be considered to be an in-
dex of the probability of existence. Equation (18) merely
compares wj with one of the population samples. The fi-
nal weighting factor ωj is defined by summing sj,k for the
entire population samples:

ωj =





p∑

k=1

sj,k if 0 ≤ r̂j ≤ 1,

0 otherwise.

(19)

According to Eq. (19), the weighting factor ωj increases
when there are a large number of population samples near
wj and decreases as wj departs from the distribution of
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Figure 1: Spectral sensitivities of a camera used in the simu-
lations. (a) Measurement of a Nikon D1x (RAW format). (b)
Linearly transformed from the CIE color matching functions. (c)
Synthesized by equi-sensitivity functions.

population samples. This implies that the weighting fac-
tor ωj reflects the probability of existence of the spectral
reflectance r̂j .

Simulations

A series of simulations was carried out in order to eval-
uate the performance of the proposed method. CIELAB
coordinates of several samples were estimated by the pro-
posed method and were compared with the actual values
by means of color difference ∆E∗

ab. The color predic-
tion accuracy of the empirical regression method described
in Eq. (10) was also evaluated in a similar manner for
comparison. Since the regression-based color prediction
method yielded negative tristimulus values for some sam-
ples, they were clipped to 0.

Through the simulations, all spectral data were sam-
pled at 10 nm intervals in the range of 380-780 nm.

Spectral reflectance data included the measured reflec-
tance of 172 patches of the Macbeth ColorChecker DC and
2832 textile samples from ISO 16066 (SOCS).16 Although
the ColorChecker DC originally consisted of 240 patches,
outer 60 gray patches having the same spectral reflectance
as the gray patches in the center of the chart and eight
patches having a high specular reflectance were removed;
therefore, the total number of patches used in the simula-
tions counts 172. Hereafter, the ColorChecker DC spectral
reflectance data set is referred to as CCDC F, while the
textile data set is referred to as Textile F. In addition, data
subsets were created from each data set. CCDC F was
randomly divided into two subsets CCDC 1 and CCDC

Table 1: Dimension of the linear reflectance model v.s. cumula-
tive contribution percentages and mean color differences for the
CCDC F and the Textile F data sets.

Number CCDC F Textile F
of Cum. cont. Mean Cum. cont. Mean

bases percentage ∆E∗
ab percentage ∆E∗

ab

3 99.3 6.38 97.8 20.06
4 99.7 1.87 99.0 6.67
5 99.8 1.07 99.5 5.49
6 99.9 0.64 99.7 1.73
7 99.9 0.57 99.9 1.15
8 100.0 0.45 99.9 0.53

2 so that each subset had the same number of samples.
Similarly, three subsets Textile 1, Textile 2, and Textile 3
were created from Textile F. These data sets and data sub-
sets were utilized as the training data and the test data for
both the regression-based color prediction method and the
proposed method. The training data were used to deter-
mine the matrix L3×8 in Eq. (10) for the linear regression
method and to perform principal component analysis for
the proposed method, while the test data were used to de-
rive color differences.

The CIE D65 illuminant was used as the viewing il-
luminant, while the measurement of a tungsten lamp was
used as the taking illuminant. Figure 1 shows three sets of
spectral sensitivities of a camera used in the simulations.
Associated with the combination of taking and viewing il-
luminants used in the simulations, µ-factors were 0.831,
0.969, and 0.559 for D1x, CMF linear, and Rect, respec-
tively.

In order to determine the dimension of the linear re-
flectance model expressed as Eq. (11), the accuracy of
spectral reconstruction was investigated. Table 1 shows the
cumulative contribution ratio for each of the CCDC F and
the Textile F data sets. Table 1 implies that using six and
seven basis vectors is sufficient to achieve the cumulative
contribution percentage as high as 99.9% for the CCDC
F data set and Textile F data set, respectively. Another
inspection was taken in terms of color difference ∆E∗

ab.
The spectral power distribution of the CIE D65 illuminant,
which was used as the viewing illuminant in the simula-
tions, and the CIE color matching functions were applied
to the original and reconstructed spectral reflectances and
the mean color difference was derived for each data set.
The mean color difference is 0.64 with six basis vectors
for the CCDC F data set and 1.15 with seven basis vectors
for the Textile F data set. According to these results, the
dimension of the linear reflectance model was set to six
(n = 6) and seven (n = 7) for each data set and hence
the dimension of the vector wh which is the input variable
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Figure 2: Color prediction accuracy for the CCDC data sets.
White bars show the prediction accuracy of the linear regression
method, while black bars represent the proposed method. Labels
for the horizontal axis denote the pair of the training data set and
the test data set.

to Eq. (15) was correspondingly set to three and four. For
the simulations using the ColorChecker DC spectra, three-
dimensional grid was created whose jth grid point repre-
sented wh,j . Each dimension was evenly sampled with 11
entries so that m, the total number of inputs to Eq. (15),
was 1331 (= 113). Similarly, 14641, (= 114) input vari-
ables were determined from a four-dimensional grid with
11 entries for the simulation of textile samples.

Results and Discussion

Figures 2 and 3 show the color prediction accuracy of
the proposed method compared with the linear regression
method. In all graphs, white bars represent the accuracy
of the linear regression method, while the black bars rep-
resent the proposed method. Labels on horizontal axes de-
note the spectral reflectance data sets used as the pair of
the training data and the test data.

The evaluation of color prediction accuracy using the
CCDC data sets reveals that although the accuracy of the
proposed method is higher than, or almost equal to, that
of the linear regression method, the degree of the improve-
ment was not highly significant. The possible reason may
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Figure 3: Color prediction accuracy for the Textile data sets.
White bars show the prediction accuracy of the linear regression
method, while black bars represent the proposed method. Labels
for the horizontal axis denote the pair of the training data set and
the test data set.

be the small number of population samples led to the diffi-
culty of making weighting factors to sufficiently reflect the
probability of existence of the reconstructed spectral re-
flectance. However, even when the number of population
samples is not large enough, it can be observed that the
performance of the proposed method is superior to that of
the linear regression method for image capturing systems
with a small µ-factor.

In the evaluation using the textile data sets, color pre-
diction accuracy of the proposed method was also higher
than the linear regression method. Figure 3 indicates that
the proposed method is highly effective for image captur-
ing systems with a small µ-factor. The reason the higher
degree of improvement was achieved comparing to the
simulations of the CCDC data sets is considered the num-
ber of population samples contained in the textile data sets
was larger than that of the CCDC data sets. Figure 4 shows
examples of the tendency observed in the coefficient w’s
derived for Textile F data set by Eq. (11). The tendency of
the population spectral reflectance samples clearly appears
in the plots of coefficient w’s and it can be considered to
have sufficiently affected the derivation of the weighting
factors expressed as Eq. (19). Although same plots were
created for CCDC F data set, observed features were less
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Figure 4: Distribution plots of coefficient w’s which were derived
by applying the linear reflectance model to the Textile F data set.
The left-hand plot shows w3 v.s. w6, while the right-hand plot
shows w4 v.s. w7.

significant because the small number of population sam-
ples caused sparse distribution.

The camera sensitivity set ‘CMF linear’ used in the
simulations is one of the optimal sets when the taking and
viewing illuminants are identical since it is a linear trans-
formation of the color matching functions. However, due
to the difference in those two illuminants, the µ-factor de-
parted from 1 and the performance of the linear regres-
sion method was rather poor for both simulations with the
CCDC and the Munsell data sets. Figures 2 and 3 show
that the proposed method was able to achieve about 10-
50% smaller color differences.

Evaluating the absolute color difference in Figs. 2 and
3 reveals that the color difference increases as a µ-factor
decreases. As mentioned above, the color difference of the
linear regression method becomes 0 when the µ-factor is
1. The theory used in the proposed method leads to the
fact that the color difference of the proposed method also
becomes 0 if the µ-factor is 1. In both methods, the color
difference increases as µ-factors decrease. Figures 2 and 3
indicate, however, the proposed method can lessen the de-
gree of increase in color difference comparing to the linear
regression method.

Conclusions

A novel method for predicting the color of an object from
its camera responses has been presented that utilizes a
population of spectral reflectance samples of real objects
based on which the effect of camera-metamerism is taken
into consideration. A series of computer simulations was
carried out in order to examine the performance of the
proposed method comparing with a conventional matrix-
based color prediction method. Spectral reflectance data
of the Macbeth ColorChecker DC and textile samples were
employed in the simulations and the color prediction accu-
racy was evaluated by means of color difference ∆E∗

ab.
The results revealed that the proposed method is effec-

tive especially when the number of population samples is
large and can achieve higher performance for image cap-
turing systems with a small µ-factor than the conventional
method.
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