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Abstract
Colour correction is the mapping of device-dependent RGBs
to device-independent standard CIE XYZs. Due to the na-
ture of colour image formation and the existence of meta-
merism, this mapping is inherently one-to-many and thus
ill-posed. However, normally it is solved for through an
error-minimising linear one-to-one transform.

In this paper we propose to make use of a definition
of metamerism while maintaining the simplicity of a lin-
ear transform in defining an error-less colour correction.
We say that a mapping is error-less if the RGB-XYZ pair
put in correspondence through this mapping is such that
a real, physically realisable reflectance that induces this
pair exists. We show how we can solve for such a map-
ping using constrained linear least squares optimisation.
However, since this problem is highly constrained, we in-
troduce a notion of error in our calculations, building on
a paramer set instead (the set of reflectances that map to
a small uniform region in RGB space). We show that as
little as 0.5% error is sufficient for a solution to exist.

We find that the metamer set constrained linear colour
correction works equally well as ordinary linear least squares
in terms of the mean and median CIE ∆E, however re-
duces the overall maximum significantly. We also show
that unconstrained linear least squares is not error-less. In
particular, those samples that are not error-less are satu-
rated samples, for which the metamer set constrained method
reduces the mean, median as well as maximum error dra-
matically.

1. Introduction

Colour imaging devices coarsely sample the colour sig-
nal through three colour filters in the long (red), medium
(green) and short (blue) wavelength range, resulting in a
response known as the RGB. These responses are a com-
posite descriptor of the light, the surface and the device.
Since devices vary in terms of their spectral sensitivities,
and these in turn are different from the human visual sys-
tem model, the CIE XYZ colour matching functions, a

transformation from the raw device-dependent responses
to a standard device-independent space is required. This
transform is known as colour correction and maps RGBs
to corresponding CIE XYZs.

Most methods are based on a simple 3× 3 linear trans-
form [12], however, unless device spectral sensitivities are
linearly related to the CIE colour matching functions, this
approach is prone to error. The reason for this error lies
in the very principle of how colour is formed. Colour im-
age formation maps continuous functions of wavelength,
reflectances, to three values only, the response vector. Due
to this difference in dimensions it is apparent that this is a
many-to-one mapping: there are many reflectances, called
metamers, corresponding the same RGB. This means that
given an RGB we cannot uniquely recover one surface
spectral reflectance that induced it. Since metamerism also
depends on the spectral sensitivities, different sets of re-
flectances will induce identical response for different de-
vices. It can be seen that this ambiguity translates also
into the problem of colour correction. The reflectances
that induce a single RGB will correspond to a set of possi-
ble XYZs. Thus also colour correction is fundamentally a
one-to-many mapping.

In this paper we argue that this ambiguity is useful.
While unconstrained linear transforms simply build on a
set of known corresponding RGBs and XYZs and min-
imise error in some way, they do not take into account
metamerism and thus the underlying reflectances that cor-
respond to these responses. It then follows that such meth-
ods can and do match XYZs to RGBs which have no foun-
dation in physical surfaces. Instead, given an RGB, we
know the entire set of possible XYZs, as this is the set of
metamers corresponding to the RGB projected to XYZs –
we refer to this set as the feasible set. At the same time we
need to choose a single XYZ and wish to maintain the sim-
plicity of a linear transform. Given these assumptions, we
can define an error-less transform. Since error in colour
correction arises due to metamerism, we say that a linear
transform is error-less if it maps RGBs to XYZs which
are in the feasible set. Thus any RGB, XYZ pair is such
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that there exists a corresponding surface reflectance map-
ping to this pair. One example of an existing error-less
transform is the metamer set constrained colour correc-
tion[2] approach. While based on the same principle, this
method is based on an approximation of the metamer set
and results in a non-linear relationship between RGBs and
XYZs.

First we recapitulate the metamer set framework in the
following section. Then, in Section 3, we describe the
concept of error-less transforms. In Section 4 we con-
duct some experiments comparing a constrained error-less
transform to standard unconstrained linear least squares.
Finally, in Section 5, we conclude and summarise our find-
ings.

2. The Metamer Set

Given an RGB, the spectral sensitivities of a device, the
illuminant spectral power distribution and a linear model
of surface reflectance of arbitrary dimension ≥ 3, it is not
possible to solve for a unique reflectance that corresponds
to this RGB. However, it has been shown before[9], that it
is possible to solve for an infinite set of physically possible
reflectances, that all induce the same RGB. Such reflectan-
ces are called metamers and form the metamer set.

Let us adopt a linear algebra representation and de-
fine colour image formation under the Mondrian world
assumptions[6]. Each spectral function is written as a dis-
crete sampling of the signal at q = 31 sample points, cov-
ering the interval [400, 700]nm at 10nm steps[11]. We de-
note r the q × 1 vector of surface reflectance, e the q × 1
vector of the illuminant spectral power distribution, R the
q× 3matrix of device spectral sensitivities and ρ the 3× 1
RGB response vector. Colour image formation is written
as:

ρ = RT D(e)r (1)

where D() is a function transforming a vector into a diag-
onal matrix.

From a mathematical perspective, Eq. 1 represents a
set of three linear equations (one per spectral sensitivity
and corresponding response) of q unknowns (the reflec-
tance r). Such systems are known as under-determined,
and have in general a whole set of solutions instead of a
single one. Assuming the three equations are linearly in-
dependent, the linear system has q−3 degrees of freedom.

One way to reduce the degrees of freedom is to make
use of linear models of surface reflectances. It has been
found that it is possible to represent surface reflectances
with vanishingly small error within a 5 to 8 dimensional
basis, found by statistical analysis of measured reflectance
data sets [7]. LetB be the q× n matrix containing n basis
vectors, such that any reflectance r is represented by the

n×1 vector σ within this basis: r = Bσ. Using this linear
model, Eq. 1 changes to:

ρ = RT D(e)Bσ (2)

Eq. 2 represents a set of 3 equations of n and has there-
fore n − 3 degrees of freedom. Since n << q we have
significantly reduced the under-determined nature of Eq.
1. Denoting the fixed part of colour formation as the 3×n
matrix Λ = RT D(e)B we thus have:

ρ = Λσ (3)

whereΛ is sometimes referred to as the lighting matrix [8].
From standard linear algebra we learn that the solu-

tions to Eq. 3 can be written in the form of a decompo-
sition [4]. One part, denoted as σρ, is referred to as the
particular solution (or fundamental [1]), and the other part,
denoted as σ0, is referred to as black. The particular so-
lution accounts for the actual response ρ and lies in the
row space ofΛ, while the black part accounts for the spec-
tral variation, results in a zero response and is hence in the
orthogonal complement of Λ. The number of degrees of
freedom then corresponds to the number of linearly inde-
pendent black solutions to Eq. 3. Since these solutions are
metameric too, they are called metameric blacks. Thus we
can write:

ρ = Λ(σρ + σ0) (4)
While the particular solution is the so-called fixed-point

of the decomposition, the metameric blacks are by defini-
tion arbitrarily scalable, thus if σ0 is a solution, then so is
a×σ0. Eq. 4 characterises all solutions that are mathemat-
ically correct, however our aim is to solve for reflectances
and not arbitrary vectors.

Reflectances are functions of wavelength representing
the proportion of light reflected from the surface they de-
scribe. It follows that they are bound between 0 (no light
is reflected) and 1 (all light is reflected). This constraint,
referred to as physical realisability, can be written as a pair
of linear inequalities per sampled wavelength – in total 2q
inequalities. Furthermore we can constrain σ weights to
mimic the nature of known measured reflectance data sets.
We thus call a reflectance natural if it can be written as
a convex combination (i.e. a linear combination with non-
negative weights summing to one) of some reflectances we
consider representative of the nature of our data. This con-
straint too can be written in the form of linear inequalities,
as it represents a convex set. Both physical realisability
and naturalness thus delimit a convex region of reflectance
space, which we refer to as feasible reflectances. Eq. 4 fur-
thermore represents a n−3 dimensional plane of σ weights
that result in a particular ρ. The intersection of the set of
feasible reflectances with the plane of solutions therefore
defines the metamer setM(ρ):

M(ρ) = {σi|ρ = Λσi} (5)
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The metamer set is therefore convex (an intersection of two
convex sets), bounded and of infinite cardinality [9].

3. Error-less Mapping

Assuming the Luther conditions [14] do not hold, i.e. de-
vice spectral sensitivities are not linearly related to CIE
colour matching functions, it follows that for a given ρ,
it’s corresponding metamer setM(ρ) becomes a bounded
convex set of χ’s in the space of CIE XYZs. Let us refer
to this set of χ’s as the feasible region defined by each ρ,
written as:

M(ρ)×X = F(ρ;R→ X) (6)

where× is a multiplication of each member of the set with
a matrix and F(ρ;R → X) the set of feasible χ’s cor-
responding to reflectances in the metamer setM(ρ) for a
change fromR toX. We then say that a 3×3 linear trans-
formmatrixT is error-less if and only if it maps each RGB
ρi to an XYZ χi inside it’s corresponding feasible set:

ρiT ∈ F(ρi;R→ X). (7)

In previous work[3] we presented a solution to a less
constrained problem. We derived a method that solves
for the linear least squares (LSQ) mapping between chro-
maticities corresponding to RGBs and XYZs, that is error-
less (maps always inside the metamer set) while minimis-
ing the least squares error between true XYZs and mapped
estimates. The reasoning behind solving such a transform
is justified by considering intensity variation in a scene,
that does not correspond to surface variation. Thus in the
case of non-uniform illumination, this is the correct ap-
proach. At the same time it is also weaker than solving for
an error-less LLSQ between RGBs and XYZs themselves.
Such a transform would be relevant under more controlled
conditions, where any variation in intensity would corre-
spond to variation in the corresponding surfaces as well.

Such a constrained formulation of the problem is very
strict. In fact, it can happen that a solution is infeasible
due to a large number of saturated samples in the set ex-
amined for example. However we can solve this problem
simply by considering a small level of noise and solving
for a paramer set[5], instead of the metamer set. Due to
the convexity of the metamer set, this turns out to be sim-
ple.

When solving for the metamer set, we start with a sin-
gle ρ and find all reflectances that map to it. In solving
for the paramer set instead we start with a small region in
RGB space. In order to consider a uniform region, we find
S uniformly sampling vertices of a sphere around ρ, of a
diameter ε corresponding to the level of noise we wish to
take into account. Each of these extreme vertices ρi has

a corresponding metamer setM(ρi). Since colour image
formation preserves convex combinations, i.e. a convex
combination of reflectances αri + (1− α)rj results in the
same convex combination of responses αρi + (1 − α)ρj ,
it suffices to find the S metamer sets, and their convex hull
defines the paramer set, written as:

P(ρ; ε) = CH(M(ρ1), . . . ,M(ρS)) (8)

whereCH() is a function computing the convex hull. P(ρ; ε)
then corresponds to the volume of reflectances that map
inside a sphere centred at ρ of diameter ε. The feasible re-
gion of corresponding χ’s in the space of CIE XYZ space
is written as:

P(ρ; ε)×X = F∗(ρ;R→ X) (9)

and finding the linear least-squares error-less colour cor-
rection, with added noise, amounts to finding a linear trans-
form minimising Eq. ?? subject to the constraint:

ρiT ∈ F∗(ρ;R→ X) (10)

Thus, an error-less linear least squares transform is a
matrix T that minimises least squares error between a set
of RGBs in theM × 3 matrixG and a set of known corre-
sponding XYZs in theM × 3 matrixY, written as:

min
T
‖ GT−Y ‖2 (11)

where ‖ · ‖2 is the L2 Euclidean distance metric, subject
to the constraint that each RGB is mapped to an XYZ from
the feasible region (Eq. 10).

4. Experiments

To test the error-less colour correction, we conducted a set
of experiments comparing it to the standard linear least
squares method. We created synthetic RGBs by way of
the colour image formation equations in Eq. 1, using four
reflectance data sets: the Dupont set of 120 samples [], the
Westland set of 404 samples [13], a set of 134 saturated
reflectances and the 426 Munsell data set [10]. To calcu-
late RGBs for each of these sets, we used CIE illuminant
D65, a near-neutral daylight and a set of camera spectral
sensitivities, both plotted in Fig. 1. The dimension of the
linear model used for each of the data sets is different, and
such that it represents the reflectance data sets with high
accuracy (> 99%), and is the smallest dimension that is
sufficient for the existence of the error-less transform. For
the Dupont and Munsell set this is 5D, the saturated set
6D and for the natural reflectances of the Westland data set
this is 7D.

We evaluated both colour correction mappings in terms
of the mean, median and maximum CIE Lab∆E, an error
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Figure 1: The illuminant spectral power distribution of CIE illu-
minant D65, the spectral sensitivities of a camera (solid) and the
CIE colour matching functions (dashed).

measure in the near-uniform CIE Lab colour space, such
that 1 ∆E corresponds approximately to a just noticeable
difference. Taking all samples from each of the sets, there
does not exist an error-less colour correction if the exact
metamer sets are used in the optimisation. Instead we used
the paramer set definition from Eq. ??, using 0.5% error.

Tab. 1, summarises the results over all samples for each
of the four sets in turn, in terms of the mean, median and
maximum error.

ELCC LSQ
mean med max mean med max

dup 3.8 2.9 17.0 4.1 1.8 19.9
sat 4.1 3.2 14.8 4.8 3.7 17.4
wst 2.6 2.1 16.6 2.8 2.0 24.4
mun 1.9 1.2 14.1 1.9 1.2 19.2

Table 1: Overall colour correction results in terms of CIE ∆E

statistics.

From Tab. 1 we see that ELCC is at least as good as
LSQ in terms of mean and maximum statistics, and is at
least as good in all but one case in terms of median statis-
tics. We learn from these results straightaway that error
less colour correction improves the actual correction error
over all samples, and most importantly reduces the maxi-
mum error. Next however, we look at only those samples
which are infeasible in the LSQ case, in other words, those
samples which render LSQ not error-less.

ELCC LSQ
% mean med max mean med max

dup 14.5 7.8 8.6 11.1 11.7 11.7 19.9
sat 10.5 8.0 8.3 10.4 13.2 13.5 17.4
wst 2.8 9.8 9.9 16.6 13.9 13.5 24.4
mun 0.9 9.9 8.8 14.1 11.5 9.2 19.2

Table 2: Colour correction results in terms of CIE ∆E statistics
of the infeasible samples.

Tab. 2 shows more significantly the difference that
error-less colour correction makes. In particular we can
see that infeasible samples are in general samples which
are mapped with higher error compared to the average case
in Tab. 1. At the same time we also learn that for these,
saturated samples, ELCC results in radically smaller error
compared to LSQ.

While LSQ is an optimal method in terms of error (note:
neither LSQ nor ELCC minimise error in terms of CIE
∆E), it does not have a notion of feasibility. The addi-
tion of the feasibility constraints to LSQ and thus solution
of the ELCC transform may seem as a constraint on the
performance of LSQ too, however since by adding the con-
straints we are adding more information to the system, we
in fact see an improvement of performance. The overall
similarity of the two methods is also coherent, as in a large
proportion (see Tab. 2), the LSQ method is error-less too.

5. Conclusions

In this paper we looked at the problem of colour correction.
Due to the nature of colour image formation and the fact
that device spectral sensitivities are rarely linearly related
to CIE colour matching functions, metamerism is present.
Traditionally, colour correction methods avoid solving for
metamerism and instead minimise error instead through a
simple linear transform.

Instead, here we solved for a colour correction method
that is built on the framework of metamerism, while main-
taining the simplicity of a linear transform and minimising
error in the least squares sense. Since error in colour cor-
rection arises due to metamerism we defined the concept
of error-less transforms. We call a transform error-less if
the RGB-XYZ pair it puts in correspondence is such that
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a physically realisable surface reflectance exists that maps
to this pair. We have shown how to solve for this error-less
transform.

In a set of experiments we compared the traditional lin-
ear least squares method to our novel approach and found
that on average our approach is at least as good as least
squares and importantly reduces maximum error. Further-
more, looking at the most problematic samples, saturated
colours, our approach reduces both average and maximum
error dramatically.
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