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Abstract 

Image segmentation is a first step to vision system and used 
as a pre-processing for many applications such as pattern 
recognition, image classification, picture coding or target 
tracking. In the previous papers, we reported an 
unsupervised image segmentation method based on 
Bayesian classifier and applied it to object-to-object color 
transformation. Although Bayesian decision rule is a robust 
tool to classify the objects statistically with the minimum 
error in average, it needs to preset some appropriate class 
centers before starting the classifier. The location of initial 
seed points much influences the segmentation accuracy. This 
paper discusses a better way to set the initial seeds and 
reports the Bayesian discriminator works better when 
coupled with k-means classifier for correcting the location 
of seed points. In addition, the paper introduces a new 
application of proposed model into scene color interchanges 
between segmented objects.    

Introduction 

Image segmentation is a low-level image processing task 
that aims at partitioning an image into homogeneous 
regions. How region homogeneity is defined depends on the 
application. A great number of works have developed the 
segmentation methods according to various criteria such as 
gray, color, texture, or shape. 

In the previous works, we reported an object-to-object 
color transformation strategy based on image segmentation.1-5 

Since the perfect segmentation is impossible in practice, 
our applications have been limited to a color transformation 
such as color correction, color matching or gamut mapping 
between two objects with color similarity, where the 
segmentation errors are not so striking. 

However, the more accurate segmentation is necessary 
for a color transformation between two objects with color 
dissimilarity. When the segmentation is successful, a flexible 
color transformation is possible for each individual cluster in 
attention. Once the colored objects are clearly segmented in 
a source and a destination image, their colors could be 
mutually interchanged from one to another. This paper 
proposes a new approach to interchange the object colors 
between different scenes with the improvement in color 
clustering method. 

Scene Color Interchange Models 

Welsh et al, proposed a color transferring method from one 
image to another in their colorization algorithm for 
monochrome image.7 Reinhard et al tried to transfer the 
scene color of one to another by scaling the color 
distributions on the three major axes in the vision-based  
lαβ color space.8 These approaches are addressed to transfer 
the total atmosphere of source scene to that of reference 
target scene. 

 
 

 

 

 

 

 

 

 

Figure 1. A concept of scene color interchange 
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In this paper, we propose a new approach to scene color 
interchange based on the image segmentation. Here the two 
types of color interchange models are discussed.  

Model A: Total color interchange between scenes  
Model B: Local color interchange between objects 

Figure 1 illustrates a system concept to interchange the 
scene colors between two different images. 

Total Color Interchange Model by Gamut 
Segmentation  

First, we tried to transfer the color distribution of source 
image onto that of destination image by applying a gamut 
mapping technique, where the gamut shape of source image 
is deformed by a ratio of source vs. destination in the 
segmented radial color vectors. 

Letting a color vector be )~1 (] , ,[ nibaL iiii == ∗∗∗X , a 
radial distance is measured from the gamut center 
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Here, the gamut surface is formed by picking up the 
points with the maximum radial distance in every segments 
divided by (∆θ, ∆ϕ) as shown in Fig. 2. 

 
  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

 

Figure 2. Segmentation of image gamut in Polar coordinate 

To transfer the gamut shape from one image to another, 
the following two gamut modulation methods are applied to 
the divided segments. 

Model A: Gamut Modulation by Maximum Radial Vector 
The image gamut is defined by a set of maximum radial 

vectors, what we call gamut matrix Rgamut as  
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A most simple way to map the source gamut to the 
destination is to rescale a source color vector jk,iS X of pixel i 
in the segment jk by the source vs. destination ratio of radial 
elements existing in the same radial segment. 
The modified source color vector jk,iS X̂  is given by 

 ( )( ) 00 µµXX +−= jk,iSjkSjkDjk,iS R/Rˆ    (5) 

Where, jkS R  and jkD R  are the source and destination 
elements in the same segment jk of gamut matrix Rgamut. 

Model B: Gamut Modulation by Mean Vector and 
Variance 

Since the Model A rescales the source gamut only by 
the ratio of maximum radial vectors in each segment, it 
doesn’t reflect the statistical characteristics inside the gamut. 
Another Model B improves Model A, which rescales the 
source color vector using the mean CIELAB vector and the 
variance of radial distances as follows.    

 ( )( ) jkDjkSjk,iSjkSjkDjk,iS /ˆ µµXX +−= σσ    (6) 

where, jkS µ  and jkD µ  denote the mean color vectors of 
source jk,iS X  and destination jk,iD X  respectively. Also, 

jkS σ  and jkDσ  are the standard deviations of source and 
destination radial distances in the same segment jk defined 
by 
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Where, jkS n  and jkD n  denote the number of source and 
destination pixels included in the segment jk.   

Local Color Interchange Model by  
Region-based Image Segmentation 

In our gamut segmentation model, a total color atmosphere 
of source scene is changed reflecting that of destination, but 
can’t transform individual object color. Figure 3 illustrates a 
local color interchange model based on an unsupervised 
image segmentation process. First the initial seed points are 
placed at the higher color populations as a candidate for the 
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clustering centers. Next, the locations of seed points are 
corrected by k-means classifier. Then the image is 
segmented by Bayesian classifier based on maximum 
likelihood theorem. Once the segmentation is successful, a 
region-based color transformation is possible between the 
different objects in different scenes.  

Bayesian Classifier with k-means Starter 
In the previous papers, we reported a well-known Bayesian 
discriminator worked well to segment the clustered color 
objects. However, an improvement in setting the initial seed 
points is left for the better segmentation. 

Setting of Initial Seeds Points 
To start an unsupervised color classifier for unknown 

image, any geometric centroid must be set as the initial class 
center. Here we tested the following three methods for 
placing K number of initial seed points in 3D CIELAB 
space. 

 
[Random] 

A random setting of seed points resulted in unstable 
segmentation, because it is independent of image. 

 
[Box center at Higher Pixel Density] 

To select the more reliable seed points depending on 
image, we generated M=m3 pieces of rectangular boxes 
surrounded by the regular lattice points inside of image color 
gamut. 

The image color distribution is partitioned by a unit box 
with the size of ∆a × ∆b × ∆L 
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Let a color vector be Xn for n-th data point and µ for the 
mean vector  in CIELAB. 
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Here, we count up the pixel population P(k) existing inside 
the each box bk ; k=1~M. Next, K body centers with higher 
color population are selected as a candidate of seeds points. 
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[Correction for Box center by k-means]  
Surely the method B sets a better initial class center 

than A depending on image color distribution, but µseed(k) 
isn’t placed at the center of each cluster but placed at each 
body center in uniformly divided unit box. In order to place 
these candidates at the right position, k-means clustering 
method was introduced to make correction for the 
selected )(kseedµ .    

k-means algorithm partitions (or clustering) N data 
points into K disjoint subsets Sｋ containing Nｋ data points so 
as to minimize the sum-of-squares criterion,  
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Where µκ is the geometric centroid of the data points in Sk 

First the initial seed points )(kseedµ are assigned to k=1~K 
classes, then the centroid is recomputed after clustering and 
the seed points are renewed. The renewal is continued until 
no further change occurs in the centroid by iteration.  

Although k-means is used as unsupervised classifier, 
here we applied this technique to relocate the initial seeds to 
the more reliable gravity centers in clusters. 

Bayesian Classifier 
According to the Bayesian decision rule, the maximum 

likelihood is obtained when the following quadratic 
discrimination function6 is minimized for k. 
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where p(k) means the occurrence probability of class k. 
Thus a color vector X is classified into class k=c, if   

min{
c
d(Bayes)}

k=1~K 
= 

c
d (Bayes)       (14) 

  
 
 
 
 
 
 
 

 

Figure 3. Unsupervised image segmentation process based on k-means Bayesian classifier 
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Bayesian classifier is expected to work better when 
coupled with k-means clustering for setting the initial seed 
points. Here we call the coupled model as k-means 
Bayesian. 

Model C: Local Color Interchange in Segmented Objects 
Model C interchanges the segmented object colors in 

source and target clusters. Here we applied object-to-object 
color matching algorithm5 in PC (Principal Component) 
space.  

First, PC s are extracted from the segmented color 
areas. Hotelling Transform projects a color vector kX in class 
k into a vector kY in PC space as 

)( µXAY kkkk −=     (15)  

The matrix kA is formed by the eigen vectors {ke1, ke2, ke3 } of 
covariance matrix kΣX  as 

[ ]321 eeeA kkkk ,,=    (16) 

The covariance matrix kΣY of {kY} is diagonalized in 
terms of kA and kΣX whose elements are the eigen values as 
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Thus the color vectors in source and target images are 
mapped to the same PC space and the following equations 
are formed to make match a source vector jYORG in class j to a 
target vector kYDST in class k through a scaling matrix jkS. 
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Solving (10) and (11), we get the following relation 
between a source color jXORG and a target color kXDST which 
we want to interchange.  

)( ORGjORGjCjkDSTkDSTk µXMµX −=−   (21) 

The matching matrix jkM
C
 is given by 

( )( )( )ORGjjkDSTkCjk ASAM 1−=    (22) 

where jAORG and kADST denote the eigen matrix for a source 
segment of class j and a target segment of class k.  

Experimental Results 

Total Color Interchange by Gamut Segmentation 
First, the total color interchange Model A and Model B 

are compared with Reinhard’s model. A color atmosphere of 
test image “red rose with dark green leaves” is interchanged 
with that of “pink rose with light green leaves” in Fig. 4(a). 
Figure 4(b), 4(c) and 4(d) show the interchanged results by 
lαβ Reinhard, Model A and Model B. Although “pink” petal 
is transformed into “reddish” and “red” petal into “pinkish”, 
and also “light green” leaf into “dark green” or vice versa, 
l αβ and Model A didn’t work well in this image. On the 
other hand, the proposed Model B succeeded in the mutual 
transfer of colors in total. Figure 4(e) shows an example of 
maximum radial vectors by gamut segmentation. In our 
model, the resultant color appearance is influenced by the 
division number of gamut. The optimal gamut segmentation 
depends on image and is a key factor left in future work.  

Local Color Interchange Between Segmented Objects 
Next, the local color interchange Model C is tested.  
To begin with, the performance of k-means Bayesian 

classifier is evaluated in comparison with normal Bayesian 
classifier without k-means.  

Figure 5 shows a segmentation result for “daily flower”. 
The nine classifiers by the combinations of three color 
distance measures and three types of initial seed points are 
compared one another. All images are segmented to K=4 
classes. As clearly shown in the top row, random seeds 
didn’t give any stable results. In comparison with the results 
in 1st, 2nd and 3rd columns, Bayesian is better than 
Euclidean or Mahalanobis and k-means Bayesian in third 
row obviously works better than normal Bayesian in second 
row.  

The proposed k-means Bayesian worked best and was 
applied to Model C. Figure 6 shows the result for the same 
image in Fig. 4. As clearly different from the total color 
interchange models, Model C interchanges the scene colors 
between two different segmented objects.  

A red rose with dark green leaves is transformed into a 
pink rose with light green leaves and vice versa. This model 
has an advantage of flexibility in object-to-object color inter- 
change but has a disadvantage of difficulty in one-to-one 
correspondence to be interchanged for K classes of objects. 

In Fig. 6, K = 4 pairs of segments could be 
automatically corresponded by choosing the closest partner 
with minimum color difference ∗

abE∆ , because the two rose 
images are a pair with color similarity. 

Figure 7 shows another interchange sample for two 
different “building” images with color dissimilarity. In this 
sample, the color interchange pairs of objects are manually 
decided. Although we haven’t any definitive solution for 
automatic selection of interchange pairs at present, the 
different pairs of object colors are flexibly interchanged 
between two different building images.   
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Conclusions 

We proposed two different scene color interchange models 
of “total” and “local”. The former is provided with Model A 
and Model B based on Gamut Segmentation and the latter 
with Model C based on Image Segmentation. In “local” 
interchange model, we introduced k-means Bayesian 
classifier by coupling a normal Bayesian with a well-known 
k-means clustering. The crucial difference in normal and 
improved Bayesians lies in whether the “initial seeds” are re-
located or not with or without k-means preprocessor. 
Although the process speed a little bit goes down, the 
segmentation accuracy is much improved. In addition, an 
object-to-object scene color interchange is challenged to 
open a new field of applications such as automatic creation 
or synthesis of images with similar atmospheres.  
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Figure 4. Examples of total scene color interchange by image gamut segmentation1 model 
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Figure 5. Comparison in image segmentations by color clustering method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Results in local scene color interchanges for images with color similarity by Model C 
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Figure 7. Results in local scene color interchanges for images with color dissimilarity by Model C 
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