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Abstract
We investigate the implications of a unified spatio-

chromatic basis for image compression and reconstruc-
tion. Different adaptive and general methods (PCA, ICA,
and DCT) are applied to generate bases. While typically
such bases with spatial extent are investigated in terms of
their correspondence to human visual perception, we are
interested in their applicability to multimedia encoding.
The performance of the extracted spatio-chromatic spatial
patch bases is evaluated in terms of quality of reconstruc-
tion with respect to their potential for data compression.
The results discussed here are intended to provide another
path towards perceptually-based encoding of visual data.
This leads to a deeper understanding of the role played by
chromatic features in data reduction.

1. Introduction

Decorrelation for redundancy reduction has a long history
in image processing. In particular variants of the Princi-
pal Component Analysis (PCA) [1] for orthogonal decor-
relation have been part of the arsenal of data reduction for
many years. The main idea here is to account for most
of the variance in the data using the first several principal
axes, and then reduce the influence of further terms either
by directly omitting these or by adopting a bit allocation
scheme to deprecate their influence.

PCA can tell us how Nature processes vision, if we
consider natural images. In particular, we expect to see
colour-opponent channels arise in a natural fashion, simply
by automatic inspection of the data. But as well, we hope
to glean evidence of how spatial processing operates. And
in fact, Ruderman et al. [2] found not only such colour-
opponent structures but also spatial derivative-like filters,
operating similarly and independently in each opponent-
colour and luminance channel.

This work was based on a very simple scheme: first,
using natural images derived from hyperspectral data and
transformed to log space, Ruderman et al. formed small
tiles, 3 pixels by 3 pixels, from an assembly of such im-
ages. Treating these 9 pixels as a vector, with each pixel
containing 3-vector colour information, leads to 27-vector
data for PCA analysis. Re-assembling the colour infor-
mation, these colour patches could also be reconstituted
as 3 × 3 colour squares, for viewing. In terms of spa-
tial components, for each of the colour channels the spa-

tial structure of the bases resembled the derivative-like and
frequency-analysis-like structures arising in a Fourier anal-
ysis of greyscale images.

The latter result was not surprising (although the decor-
relation from colour was): Olshausen and Field’s seminal
work on receptive field properties [3] implied that the re-
ceptive fields in mammalian primary visual cortex simple
cells are spatially localized, oriented, and spatially band-
pass in the sense of being selective to structure at differ-
ent spatial scales, for non-colour luminance inputs. Visu-
ally, these fields resemble a 2-dimensional Discrete Cosine
Transform basis in an N ×N checkerboard structure (see,
e.g., [4], and below), but with diagonal as well as rectan-
gular basis images.

PCA has also been applied to non-interpolated, raw
Colour Filter Array (CFA) data [5], with the result that
the recovered basis finds only colour information, not lu-
minance information, so is not appropriate for modelling
spatial information.

2. Related Work

As opposed to an orthogonal PCA basis, some workers
have also considered an Independent Component Analysis
(ICA) of natural images [6]. ICA proceeds by producing
a minimally redundant set of basis functions. To do so, a
set of maximally statistically independent basis vectors is
found. To understand what this means let us consider two
stochastic variables x1 and x2, e.g. the coefficients of our
data projected on two different axes. Their joint probabil-
ity density is p(x1, x2). The separate probability densities
for x1 or x2, their so-called marginal probability, can be
computed by p1(x1) =

∫
p(x1, x2)dx2. Then x1 and x2

are independent if and only if

E{h1(x1)h2(x2)} = E{h1(x1)}E{h2(x2)}, (1)

where E means expectation and h1, h2 can be essentially
any two integrable scalar functions; the above is therefore
a very strong condition. It says that any nonlinear trans-
forms of the independent components are uncorrelated —
their covariance is zero. In comparison, PCA decorrelates
but does not guarantee independence. That is, projecting
the data to the decorrelated axes the distribution of two re-
sulting coefficients b1 and b2 fulfill

E{b1b2} = E{b1}E{b2}. (2)
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This corresponds to Eq.1 with h1, h2 being linear. How-
ever, PCA (“whitening”) is still useful as a pre-processing
step for ICA, and we use it that way here.

ICA has been found useful for data reduction by ‘sparse’
coding, i.e., finding underlying sources such that any given
image is naturally represented in terms of just a small num-
ber of these: ICA [6] reproduces results for optimizing
sparseness [3].

Figure 1: New basis vectors for a given colour distribution from
right image as found by PCA (red) and ICA (green).

ICA is used for the extraction of hidden sources gen-
erating observed data. For example, consider the image
in Fig. 1. The RGB values in this image form clusters,
as in shown in the left of Fig. 1, with orthogonal PCA
axes shown in red. In contrast, the ICA axes show that
the image is actually comprised of just a few independent
sources. It should be noted that ICA is data adaptive: we
would like to develop a set of basis vectors that is different
for each image. Of course, we could develop a universal
set from a training set, but an adaptive model is bound to
be more expressive for a particular image since, as we see
from Fig. 1, the hidden characteristics of content are ex-
tracted.

The vocabulary used for ICA is somewhat different
than that used for PCA. ICA is one way of solving the
Blind Source Separation problem. Just as for PCA, if we
have a feature-vector x , then if there are k basis vectors
we can approximate x as

x ' B b (3)

where the k columns of B hold our ICA basis vectors, and
b is the set of weights. In ICA, the matrix b is called the
mixing matrix and B is a multidimensional stochastic vari-
able of independent sources. E.g., in PCA, vector x could
be a greyscale image, and B would consist of eigenim-
ages. However, for ICA the columns of B are not or-
thogonal. Therefore to find the weights b we must use the
Moore-Penrose pseudoinverse of B , applied to the target
image. The pseudoinverse is referred to as the set of ICA
filters. ICA has been used for multimedia data fusion as
well [7, 8] — in this case, ICA recovers common latent
subspaces for combined media. Typically, however, PCA
is used [9,10], applied to much smaller feature spaces than
pixel-level.

The process of finding ICA vectors is based on the
Central Limit Theorem, which states that a sum of non-
Gaussian random variables is more like a Gaussian than
are its individual components. But the independent sources
sought can be written as sums of the observed data. Thus
we can move toward independent sources by trying to find
a sum of the observed data over vectors which have max-
imum non-Gaussianity. The latter property can be charac-
terized by the kurtosis (the fourth-order cumulant), which
is zero for a Gaussian. However, a more robust measure
is formed by the negentropy, the difference between the
entropy for a Gaussian and that for the current basis, us-
ing the observation that for a given standard deviation σ,
a Gaussian Gσ has maximum entropy compared to other
probability distributions.

Thus one arrives at a gradient descent method for de-
termining the IC basis, and since this can be phrased as a
fixed-point problem, mechanisms similar to the Contrac-
tion Mapping Theorem can be brought to bear for exis-
tence, uniqueness, and convergence rate. The method we
use here is the FastICA algorithm [11], which converges in
cubic time.

For greyscale imagery [3, 6], PCA indicates that a mu-
tually orthogonal spatial basis for imagery consists of band-
pass filters similar to 2-dimensional Discrete Cosine Trans-
form (DCT) basis images, but with some non-rectangular
orientation present (cf. Fig. 2). How one creates such an
image is by randomly selecting N -pixel by N -pixel square
patches from a greyscale image, vectorizing these N2 val-
ues, and identifying the basis as the eigenvectors of the
mean-subtracted covariance matrix. In contrast, ICA of
greyscale imagery produces basis functions that are again
bandpass, but are more obviously oriented and are simi-
lar to Gabor functions — Gaussian-windowed sine waves
[3, 6].

2.1. Basis functions generated by ICA on natural im-
ages

A survey of applications of ICA to the processing of dif-
ferent media (image/video, multimodal brain data, audio,
text, and combined data) is provided by [12]. In their sur-
vey it becomes apparent that ICA has been widely used
for classification but implications of ICA for multimedia
compression have not been studied as of yet.

Figure 2: Spatio-chromatic basis obtained from PCA on 4× 4×
RGB image patches of the example in Fig. 1.

When colour is included, our patch vectors become
N ×N × 3 structures, for RGB images. PCA proceeds as
stated above, but for these longer vectors, and the resulting
structure can be visualized as in Fig. 2 (for N = 4). Note
that the PCA basis is adaptive to the image (but in fact does
not change much, for natural imagery we have tried).

In [2], Ruderman et al. extend a 3D colour PCA, as in
the red vectors in Fig. 1, to a spatial patch domain by using
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3 × 3 patches of 3-vector colour data. In comparison, in
a sense Fig. 1 shows results for 1 × 1 patches. Ruderman
et al. conclude that for foliage images, PCA of log L,M,S
data tends to decorrelate spatial processes from chromatic
ones, leading to 9 spatial features times 3 colour ones. The
latter are, in order, luminance, blue-yellow, and red-green.
This result was extended by Wachtler et al. [13, 14] by re-
placing PCA with ICA, again for L,M,S data but now using
7× 7 patches.

Colour images and stereo vision have been investigated
by [15] showing that the derived independent components
also yield a separation of basis vectors into luminance and
opponent colours.

Besides allowing for conclusions regarding human vi-
sual perception, these chromatic bases with spatial extent
are very interesting from an image compression point of
view. In the following we are going to take a closer look
at the implications of encoding visual data with respect to
these bases.

3. Data specific basis functions

The goal of our analysis is to compare the suitability of dif-
ferent data-adaptive basis functions for compressing visual
data. Therefore, a set of colour images is chosen that spans
a variety of outdoor scenes containing plants, animals, hu-
mans and artificial objects. The perspectives of the images
range from detail shots to panoramas1.

In the following we will consider three different sets
of bases — two data-adaptive methods, namely PCA and
ICA, and one general basis, the discrete cosine transform
DCT, moved here into a colour domain such that it resem-
bles the PCA.

Figure 3: Basis patches for DCT decomposition of spatio-
chromatic 4× 4× RGB patches. Sorted in order of decreasing
variance-accounted-for from left to right and top to bottom.

The DCT basis is a descendant of the Fourier trans-
form. To apply it to the spatio-chromatic setting we sim-
ply treat the two spatial patch extents and the index of
RGB colour components as a three dimensional rectangu-
lar prism, e.g., a 3× 3× 3 cube. Fig. 3 shows the resulting
basis re-assembled as a colour picture. Note the similar-
ity of this artificially generated basis to that obtained by
PCA in Fig. 2. The most prominent difference is a slightly
changed orientation of the directional frequencies that are
axis-aligned in Fig. 3. A similar explanation applies to
the fact that the main colour axes are chosen differently.
Also note that the ordering by the variance-accounted-for
is quite different because of the different alignment of the
basis. In the DCT case the pure colour dimensions appear

1We have used the 23 Kodak stills from CIPR at http://www.
cipr.rpi.edu/

later in the sequence after several luminance frequencies.
In the PCA case all three of them appear as the most sig-
nificant vector.

Figure 4: Basis patches for ICA of spatio-chromatic 4×4×RGB
patches. Sorted in order of decreasing variance.

Fig. 4 shows the result of ICA performed on the im-
age set, for a particular patch size. While the results of
DCT and PCA can be interpreted as a frequency decom-
position of the data, the functions obtained by ICA exhibit
a combined localization in space and frequency [15]. Ap-
parently, this basis seems to again treat opponent colour
separately from luminance — similar to the observation
that is already illustrated in Fig. 2 for the PCA case.

Besides deciding on a method of basis generation, we
have to make a choice about the size of the patches we will
operate on. To create a basis, the analysis is performed on
squared pixel neighbourhoods. We randomly sampled a to-
tal of 50000 patches over the images of the given set. The
resulting basis functions then reflect the statistical proper-
ties of the presented data.

To use the basis for reconstruction, the images are reg-
ularly tiled into an arrangement of non-overlapping patches.
As mentioned above in the discussion of Eq. 3, the coef-
ficients for each patch of the image can be obtained by a
linear transform using the filter patches. These are essen-
tially the inverse of the basis patches. Respectively, going
back from the coefficients to the actual image data is done
by transforming the coefficients in a linear combination of
the basis patches.

3.1. Variance thresholding and quantization of coeffi-
cients

After having projected the image data to the new basis the
resulting coefficients have to be reduced in some way. If
no reduction takes place no compression will apply. There-
fore, we have implemented two different methods of re-
duction: pruning of components by variance thresholding
and alternatively variance-based quantization.

3.1.1. Variance thresholding

The variance thresholding is the same method commonly
applied in dimensionality reduction using PCA. The over-
all variance of the data is taken as the sum of the vari-
ances corresponding to each basis vector. This measure
falls out from the eigenvalue decomposition of the covari-
ance matrix. Another way of obtaining it is by looking at
the variance of the coefficients after projecting the data to
the basis. In order of decreasing variance, just as many
basis vectors are preserved as needed to retain to a user-
specified ratio of the total variance. The rest are considered
to be insignificant and are set to zero, i.e. the coefficients
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do not need to be stored. This is essentially the amount of
compression that arises from this method.

ICA has a similar behaviour to PCA in terms of dis-
tributing variance among basis vectors. Its particular
strength lies in minimising the mutual information among
basis vectors or a sparse coding of coefficients. This ad-
vantage is particularly relevant when applying entropy en-
coding to the coefficients.

3.1.2. Entropy coding

The coefficients are given as continuous (floating point)
numbers. To apply entropy coding, we have to quantize
them first. An overview of different techniques for scalar
and vector quantization is given in [16]. In our tests we
have decided for the method of assigning each basis vec-
tor a number of bits proportional to its standard deviation.
The proportionality factor is chosen to fulfil a given overall
contingent of bits. Given the number of bits, each channel
of coefficients is uniformly quantized from its minimum to
its maximum occurring value, and ensuring the existence
of one bin for zero.

Now, having expressed the coefficients as discrete num-
bers, we can apply an entropy-based encoding, e.g. Huff-
man coding, a form of variable length coding (VLC). The
VLC compression indicated in the graphs below is a the-
oretical limit that can be computed from the sum of en-
tropies for all channels by exponentiation to the base 2.
The rate of compression then is the factor by which the
estimated encoded data is smaller than the original data,
which has been stored with 8 bits per channel.

3.2. Quality of reconstruction

Besides looking at the size of the data after compression,
we most importantly have to look at the quality of the re-
construction obtained from the reduced representations. A
measure commonly used to assess this quality is the peak
signal to noise ratio (PSNR), in decibels (dB)

PSNR = 10 log10

(
G2

MSE

)
(4)

MSE =
PN

i

PM
j

P
k∈RGB(pk(i,j)−ok(i,j))2

3MN (5)

where G is the maximum representable value (e.g. 255)
and MSE is the mean squared error of the reconstructed
picture pk(i, j) and the original ok(i, j). The entire term
in the logarithm is inversely related to the reconstructed
variance that we have referred to in the previous section
when considering variance thresholding. A drawback of
the PSNR is that it does not actually reflect the distortion as
perceived by a human observer. Nevertheless, it is a conve-
nient measure to illustrate the quality of reconstruction in
a physical sense, and shall be sufficient for our subsequent
evaluation.

4. Evaluation of different basis sets

The efficiency of a basis is understood as the relation be-
tween image quality retained for an achievable rate of com-
pression (or vice versa). Thus, we have conducted a num-
ber of tests for different sets of bases (ICA, PCA, and

DCT). Each basis is generated and applied separately over
range of squared patch sizes from 1 × 1 to 16 × 16. The
first case is similar to just interpreting the pixel colours.
As patch size increases, the influence of neighbours is in-
cluded more and more. Another variable in the compari-
son is the compression parameter. In the case of variance
thresholding this is the ratio of reconstructed variance, and
for the entropy coding this is the overall maximum num-
ber of bits for the stream. Note that the actual achievable
compression then entirely depends on the entropy of the
data.

4.1. Compression vs. quality using spatio-chromatic
bases

The test results illustrated in Fig. 5(a,b) are for reducing
the data by variance thresholding. The edge length of the
square basis patches is given in pixels. The compression
rate is the factor by which the encoded data is smaller
than the original image. The comparison is made between
colour and greyscale images, where in the first the idea of
a spatio-chromatic basis is applied. The second test simply
applies a greyscale PCA basis on a greyscale version of the
images. The major observation that can be made is that the
iso-lines of compression move towards higher PSNR for
larger patch sizes. This trend is significantly stronger on
the left, with colour included. Also, colour helps quality,
compared to greyscale at equal compression. DCT is not
shown since it is similar to PCA.

Fig. 6(a,b) provides a comparison of the entropy-based
variable length coding of the spatio-chromatic coefficients
of ICA vs. PCA. Here the property of ICA to result in
sparsely coded coefficients becomes apparent. The lower
entropy of the quantized data results in significantly higher
compression rates. Nevertheless, as the surface for ICA is
more bent to the back we note that the PSNR for the mid-
range compression rates is lower than for PCA. Both plots
show a significant improvement of the compression/error
tradeoff as the patch size increases.

4.2. Performance of a specialized basis

The previous examples have shown the quality of recon-
struction for general bases that were obtained from the en-
tire set of images. The following analysis considers just
one image (shown in Fig. 8). This allows us to tailor a
specialized basis for this particular image.

In the specific encoding test in Fig. 7, ICA performs
significantly better than PCA for large patch sizes. It achieves
higher compression for the same quality of reconstruction.
Also, a trend can be noted that ICA tends toward increased
quality with larger patch sizes while PCA roughly stays
constant. The DCT statistics for this image are not in-
cluded here because they are very similar to the outcome
of the PCA for patch sizes larger than 4.

The image these statistics have been performed on is
shown in Fig. 8a. The example shown is obtained after
compression with a specialized ICA basis: this basis has
been extracted from patch samples taken only from this
particularly image. A visual comparison in Fig. 8b shows
a detail of the left image. The lower half is the same image
compressed to the same projected file size (1:12) using a
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(a) (b) (c)
Figure 5: Variance-thresholded compression using PCA generated (a) spatio-chromatic and (b) greyscale basis functions; colour
indicates PSNR as per (c).

(a) (b)
Figure 6: Entropy-based compression of colour images using (a) ICA and (b) PCA generated spatio-chromatic basis functions.

(a) (b)
Figure 7: Entropy-based compression of Fig. 8 a) specific ICA, b) specific PCA.
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(a) (b)
Figure 8: (a): Original image. (b): Compression ratio 1:12 us-
ing an image specific ICA basis (PSNR 35.55), and DCT com-
pression (PSNR 31.97). Both are for 16× 16 patches.

DCT basis of the same block size (16× 16). DCT exhibits
strong blocking artifacts while these are hardly noticeable
in the ICA version.

5. Summary

The computation of individual bases for restricted sets of
images is interesting from a vision and a multimedia point
of view. While the first point has been subject of previ-
ous work targeting analogies to human perception, we have
tried to illuminate the latter. The results indicate a signif-
icant difference comparing the compressibility of coeffi-
cients from ICA and PCA. The sparse coding property of
ICA bases has been shown to have a noticeable impact on
the efficiency of subsequent entropy compression.

A problem inherent in the approach of specialized bases
is that they first have to be generated in a computationally
expensive preprocessing. Furthermore, a basis specific to
one data set would have to be stored along with the coef-
ficients to allow for decoding. This would certainly add
overhead to the compressed data. Nevertheless, in a con-
strained domain it is possible to prepare basis functions
that can be reused.

In future we plan the extension of the current frame-
work to video data. The inclusion of motion will result
in a temporal spatio-chromatic basis. As well as revealing
implications for video compression, this may indeed also
bear relation to human perception.

Because of the proximity of the outcome of indepen-
dent component analysis to receptive fields of simple cells
in the V1 visual cortex, it could be possible to derive a
more perceptually-based error metric for evaluation of the
quality of visual representations. Advances of research in
the human perceptual system may lead the way to an error
metric that more closely corresponds to the assessment by
a human observer.

Another interesting property of the ICA basis is that
it resembles expressive features of the image. This prop-
erty also hints at the relationship between ICA filters and
wavelet analysis. Taking this into account, it seems worth-

while to consider the compressed coefficients as a higher-
level feature description of the image.
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