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Abstract 

Color space transformation (or color correction) needs to be 
performed in typical imaging devices because the spectral 
sensitivity functions of the sensors deviate from the ideal. 
Several researchers have shown that when the color channels 
are correlated, color correction can result in sensor noise 
amplification.1-4 In this paper, we describe a color correction 
method that significantly alleviates the problem of noise 
amplification. The key idea is to use spatially varying color 
correction (SVCC) that adapts to local image statistics. We 
show experimental results that illustrate the reduction of 
noise when color correction is performed.  

I. Introduction  

The spectral sensitivity functions (or spectral responsivity) of 
the 3 or more color channels in digital imaging devices do 
not match those of the desired output color space (e. g. CIE-
XYZ, sRGB, NTSC). Thus, it is necessary to transform the 
raw color images into the desired color space, which is 
usually performed using a linear transformation matrix. For 
sensors with R, G and B color channels, color correction is 
typically performed by multiplying a 3x3 matrix with the 
vector formed by the R, G and B values at each pixel. i. e.,  

 

The main differences among the linear transformation 
methods are the constraints they use to derive the color 
correction matrix. One method is to obtain the color 
correction matrix by solving the least-squares problem that 
minimizes the sum-of-squared-difference between the ideal 
and color-corrected spectral sensitivity function. Although 
this method minimizes the color error in the color-corrected 
R, G and B values, the 3x3 multiplication may amplify the 
image sensor noise. This becomes a major concern when the 
spectral sensitivity functions of the image sensor have high 
correlation between them. For example, Barhoeffer et. al.1 

have shown that some sensors with cyan, magenta, yellow, 
green (CMYG) filter set suffer from this noise amplification.  

Several authors have investigated the color estimation 
error trade-offs.1-4 Barnhoeffer et. al.1 explored the trade-off 
between mean color deviation and the amplification of noise. 
The trade-off was described mathematically and a new 
methodology for choosing an appropriate transformation was 
proposed. Vora et. al.2 showed that the noise amplification is 
related to the degree of orthogonality of the filters and noise 
reduction comes at the cost of color saturation. In these 
approaches, the trade-off is performed by choosing the 
optimum color correction matrix for the entire image. We 
argue that by loosening the constraint of having a fixed color 
correction matrix for the entire image, a better trade-off can 
be obtained. In this paper, we describe a spatially varying 
color correction (SVCC) method that achieves a better trade-
off between color fidelity and image sensor noise 
amplification. The method first estimates the 2nd order 
statistics of local image regions and computes the optimum 
color correction matrix for each local image region. Note that 
this color correction method is optimum in a mean-squared-
error sense.  

The organization of this paper is as follows. Section II 
describes how the optimum color correction is obtained from 
the 2nd order local image statistics and shows how it may be 
implemented in an imaging system. Section III shows some 
experimental results that illustrate the improvement from 
using the proposed method.  

II. Spatially Varying Color Correction Method  

In this section, we describe the new color correction 
(transformation) method that alleviates noise amplification. 
In Subsection II-A, we first give a derivation on how to 
obtain a color correction matrix for each local image region 
assuming that 2nd order local image and noise statistics are 
known. In Subsections II-B and II-C, we then describe how 
to practically implement this and we provide possible 
extensions to the baseline approach. 

A. Derivation of the Method  
In this subsection, we describe how each color 

correction matrix is computed assuming the local image 
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statistics have already been estimated. Assume that we have 
the color correction matrix CNOMINAL that minimizes color 
error (but does not take sensor noise into consideration). 
This color correction may have large off-diagonal elements 
and suffer from severe noise amplification. We describe how 
to vary this matrix from image region to image region in 
order to solve the problem of noise amplification with 
minimum sacrifice of color fidelity.  

 

Figure 1. Model used for the derivation  

 
 
The model we use for our derivation is shown in Figure 

1. An ideal, noise-free case would be when there is no noise 
and we use CNOMINAL to perform color correction. Since there 
is no noise, CNOMINAL would still be optimum. However, 
when noise is present CNOMINAL may amplify noise and be 
sub-optimum in mean-squared-error sense. In the real case, 
we compute spatially varying CNEW to alleviate noise 
amplification. The definitions of the symbols are given as 
follows.  

 

 

 
Using the symbols defined, Figure 1 can be summarized 

as follows.  

 

 
The objective is to obtain CNEW (or α , β and γ)   that 

minimizes expected sum of color error and amplified noise. 
In other words, the objective is to estimate CNEW that 
minimizes the expected difference between the outputs of the 
“Noise-free case” and the “Real case” as illustrated in Figure 
1. Consider color correction coefficients [α β γ] Τ for the G 
channel, which correspond to the second row of color 
correction matrix. Other channels can be derived similarly. 
We wish to minimize f, the expected value of the sum of 
color error and output noise.  

 

where E[] is the expected value. Optionally, one can weigh 
NG differently than shown in Equation (1) where the weight 
was equal to 1. Higher weight on NG would put more 
emphasis on the noise amplification while sacrificing color 
fidelity. In our derivation, the weight is set to 1 for 
simplicity. Since G*= α* R + β* G + γ * B, G’= αR + βG + 
γB and N’G = αNR + βNG + γNB, Equation (1) can be re-
written as  

 

Equation (2) can be simplified by assuming that NR, NG, 
NB, R, G and B are uncorrelated. Further assuming that NR, 
NG and NB have zero means and standard deviations of σR, 
σG and σB, we obtain  

 

To minimize f in Equation (3), we take partial 
derivatives of f with respect to α, β and γ, and set them to be 
zero. We then obtain three equations that can be summarized 
in matrix form as  

 

where Cor is the correlation matrix of [R + NR   G + NG   B + 
NB]T and CorNN is the correlation matrix of [NR NG NB]T. 
Note that [R + NR   G + NG   B + NB]T are the pixel values 
that we can measure while [R G B]T are the noise-free pixel 
values that we do not have access to. From Equation (4), the 
α, β and γ that minimizes the sum of color error and output 
sensor noise can be simplified as  
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Similar derivation can be applied to R and B channels 

and by combining them, we obtain 
 

 

 
Equation (5) shows how to vary the color correction (or 

transformation) matrix based on the correlation matrix of the 
pixel intensity values (with noise) and the variances of the 
noise. The correlation matrix of the pixel intensity values can 
be estimated by computing average values of [R + NR   G + 
NG   B + NB]T[R + NR   G + NG   B + NB]. Although we 
assumed that the noise values and the pixel intensity values 
are uncorrelated in our derivation, the variances of the noise 
do depend on the intensity. This is because the image sensor 
noise is the sum of the shot noise and readout noise and the 
variance of shot noise for each channel depends on the pixel 
intensity values.  

The simplest way to use Equation (5) would be to apply 
it to the whole image (i. e. estimate Cor of the entire image 
and apply CNEW). This would result in a color correction 
matrix similar to LMMSE solution described in References 3 
and 4. However, the real merit of using Equation (5) can be 
seen when different values for CNEW are applied to smaller set 
of pixels. Since the 2nd order image statistics (i.e. 
correlations) are not stationary throughout the image and 
vary from one local image region to another, it is 
advantageous to apply different color correction matrices to 
different local image regions. To maximally benefit from 
having different color correction matrices, the size of the 
local image regions should be small enough such that the 
pixel values within the local region have similar 2nd order 
image statistics but large enough for accurate estimation of 
the correlations. Equation (5) provides a way to adapt the 
color correction matrices to alleviate noise amplification 
problem given a set of pixels in a local image region.  

B. Baseline Implementation  
The block diagram of the method is shown in Figure 2. 

The first block is optional since the variance of the image 
sensor noise can be obtained from the sensor data 
specifications. Even in this case, however, the noise variance 
needs to be computed from the average value of the local 
image region because of shot noise component in the image 
sensor noise. If color correction is performed after image 
processing or when sensor specifications cannot be obtained, 
the image noise variance can be estimated from methods 
described in References 5 and 6. The next step is to divide 
the image into local regions and estimate 2nd order statistics 
of the image regions. After obtaining the correlation matrix 
of R, G and B pixel values (with noise), the color correction 

matrix for the local image region can be obtained using 
Equation (5).  

 
 
 

 

Figure 2. Block diagram of the new color correction method  

 
 
 
 
There are many ways to implement region-based image 

processing. The simplest way that is commonly used in 
compression standards such as JPEG or MPEG is to divide 
the image into non-overlapping blocks. This is very attractive 
in terms of implementation because the algorithm does not 
require additional frame memory for implementation. Unlike 
these block-based compression standards our color 
correction method does not suffer from blocking artifacts as 
can be seen in Section III. This is because CNEW tries to 
minimize color error as well as noise, which makes it more 
robust to blockiness artifact. To choose optimum block sizes, 
we applied the new method while we varied the block sizes 
and monitored the mean-squared-error after color correction. 
Although optimum block size depends on the image content 
and statistics, a block size of 8 by 8 seemed to achieve the 
best results for typical images. Images with more high 
frequency content generally require smaller block sizes.  

The summary of the baseline procedure is given below.  
 

1) Divide the image into non-overlapping 8 by 8 blocks.  
2) For each block, compute the correlation matrix (Cor) of 

the R, G and B channels and estimate the correlation 
matrix (CorNN) of the image sensor noise.  

3) Compute the color correction matrix using the 
correlation matrices Cor and CorNN.  

4) Apply the newly calculated color correction matrix CNEW 
to all the pixels in the block.  

5) Proceed onto the next block and repeat the steps 2), 3) 
and 4)  

C. Extension of the Baseline Approach  
There are several ways to extend the baseline approach. 

One extension would be to use other metric than mean-
squared-error in RGB space. For example, optimizing for 
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smallest error in CIELAB space may yield better perceptual 
results. Another extension would be to apply the method to a 
4 (or higher) color imaging system. In the previous sections, 
we described the method assuming 3 color channels for the 
image sensor. Although this is true for most image sensors 
today, this method can also be used to convert more than 3 
color channels to the standard R, G and B color space. Since 
each color channel will have different noise statistics, the 
proposed color conversion matrix will naturally choose the 
color channels that have lower noise than the others. Thus, 
this method can be used to adaptively weight the color 
channels depending on the noise characteristics. For 
example, if the sensor has cyan, magenta, yellow and green 
color channels, the proposed color-correction matrix can be 
used as a vehicle to choose (and weigh) the color channels 
that minimizes sensor noise and color error.  

In the “Step 1)” of the baseline approach (II-B), the 
image is divided into multiple regions. Instead of dividing 
the images into 8 by 8 blocks, it is more logical to group the 
pixels that have similar statistics. One way would be to 
group the pixels that have similar colors using clustering 
algorithms or vector quantization algorithms and then 
calculate the color correction matrix for that region. This 
could potentially give better results than using non-
overlapping rectangular blocks but would be more complex 
to implement. One extreme case of this would be to divide 
the image according to “photometric similarity” rather than 
“geometric proximity”. In other words, we could have a 
look-up-table of several color correction matrices based on 
the pixel values.  

In the case when calculating the inverse of Cor matrix is 
too complex to implement, the computational complexity of 
the proposed method can be reduced by using numerical 
algorithms such as conjugate gradient or steepest descent 
method. Initial starting point for CNEW matrix can just be 
CNOMINAL or the CNEW matrix of the adjacent block.  

III. Experimental Results  

A. Experimental Setup  
To test the effectiveness of the SVCC method, we used 

hyperspectral images obtained from Reference 7. Each 
hyperspectral image consists of 31 monochrome image 
planes, corresponding to wavelengths between 400nm to 
700nm in 10nm steps. The hyperspectral images were 
subsampled by a factor of 4 (both horizontally and vertically) 
to reduce the immense size of data. Hyperspectral images 
allow us to simulate arbitrary color filters instead of being 
pinned to a specific color filter. Figure 3 shows the spectral 
response of a set of color filter arrays (including quantum 
efficiency of the image sensor). The spectral response that 
has high overlap between color channels was chosen to 
illustrate the effectiveness of our method. Recall that when 
color channels are highly correlated, the resulting color 
correction matrix will have a high condition number. Also, 
the hyperspectral images have high bit depth and extremely 
low noise, which facilitate quantitative analysis and 
extensive testing. We simulated the image capture process of 

an ordinary consumer digital camera with the image sensor 
noise model described in Reference 8. The image sensor 
noise is the sum of shot noise, readout noise and fixed 
pattern noise regardless of the type of the image sensors. We 
chose typical image sensor parameters, which are listed 
below.  

 
*Well capacity: 40000 electrons 
*Sensor readout noise: 60 electrons 
*Conversion gain: 25 µ V/e 
 
 

 

Figure 3. Spectral response of the color filter used for our 
simulations  

 
 
 
When the entire capture process is simulated without 

adding any noise, the ideal noise-free color corrected image 
(i. e., the “Noise-free case” in Figure 1) can be obtained and 
used as the ground truth image. The “Real-case” images 
resulting from different color correction methods can be 
quantitatively compared by computing the mean-squared-
error difference with the ground truth image.  

B. Results  
From the spectral response shown in Figure 2, we 

computed the color correction matrix that transforms the raw 
R, G and B values to sRGB space. The color correction 
matrix with the least color error (CNOMINAL) is  

 

 

Note that the high off-diagonal element results in high 
noise amplification. This is mainly because of the high 
correlation between the color channels. Figures 4, 6 and 8 
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Figure 4: After color correction with CNOMINAL  

 

 
Figure 5: After color correction with CNEW 

 

 
Figure 6: After color correction with CNOMINAL  

  

 
Figure 7: After color correction with CNEW 

 

 
Figure 8: After color correction with CNOMINAL  

 

 
Figure 9: After color correction with CNEW      
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illustrate the zoomed-in parts of the color corrected image 
using the conventional method (CNOMINAL). Figures 5, 7 and 9 
illustrate the zoomed-in parts of the color corrected image 
using the new SVCC method (CNEW).  

To measure the noise reduction quantitatively, we 
computed the mean-squared-error between the “Noise-free 
case” image (ground truth) and the “Real-case” images using 
both the conventional and the SVCC method. The mean-
squared-error (MSE) which includes both the color error and 
amplified noise was 6.69 Digital Number (DN) using the 
conventional method (CNOMINAL) while the MSE for the 
SVCC method was 3.8 DN.  

IV. Summary  

The paper described the SVCC method that performs color 
correction (or transformation) without excessive noise 
amplification even when color channels are highly 
correlated. The key idea was to locally optimize color 
correction matrices instead of having a single matrix for the 
entire image. It is worthwhile to note that the SVCC method 
can be applied to any color transformation such as RGB to 
YCbCr transformation. Also, the SVCC method can be used 
to choose the color channels adaptively when certain 
channels have lower fidelity than the others. As was briefly 
discussed in Section II-C, we believe the SVCC method can 
be improved by a more sophisticated choice of “local 
regions” than a fixed block.  
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