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Abstract

The surface reflectance functions of natural and man made
surfaces are invariably smooth. It is desirable to exploit
this smoothness in a multispectral imaging system by us-
ing as few sensors as possible to capture and reconstruct
the data. In this paper we investigate the minimum num-
ber of sensors to use, whilst also minimising reconstruc-
tion error. We do this by deriving different numbers of
optimised sensors, constructed by transforming the char-
acteristic vectors of the data, and simulating reflectance
recovery with these sensors in the presence of noise. We
find an upper limit to the number of optimised sensors one
should use, above which the noise prevents decreases in
error. For a set of Munsell reflectances, captured under
educated levels of noise, we find that this limit occurs at
approximately 9 sensors.

Introduction

The information contained in a black and white image is
insufficient to reproduce the scene’s spectral information.
For example, it is not possible to know if a shirt which ap-
pears grey in the image is red, green, blue or yellow. This
means that surfaces with different reflectance properties
are likely to integrate to the same grey shade. This phe-
nomenon, whereby spectrally different surfaces integrate
to the same camera response, is known as metamerism
[1, 2].

It is possible to reduce metamerism by increasing the
number of channels in the device. For example, most com-
mercially available cameras employ three channels, which
are commonly chosen to be red, green and blue. Three
channel, or trichromatic, cameras significantly reduce the
degree of metamerism encountered in black and white cam-
eras. Unfortunately, trichromatic cameras are not able to
fully eradicate metamerism [2]. Thus, like in the example
of a grey shirt in a black and white image, many surfaces
might integrate to the same trichromatic response, making
surface separation an impossible task.

To further decrease the degree of metamerism it is nec-
essary to make cameras with more than three colour chan-
nels, such cameras are known as multispectral cameras

[3, 4, 5, 6]. Unfortunately, the drive to increase the number
of sensors is restricted by the increased cost and memory
requirements as well as manufacturing limitations. In light
of these constraints and the need for an increased number
of channels we are faced with the question that we address
in this paper, namely, what is the minimum number of sen-
sors needed in a multispectral imaging device such that the
error in recovering the reflectances is minimal.

As a first approximation we might assume that the num-
ber of channels needed in a multispectral camera is lim-
ited, and relates to the underlying dimensionality of the
captured data. Such an assumption is supported by a large
body of research in spectral data dimensionality where it
is agreed that a small number of basis functions is ade-
quate to fully represent large data sets. From analyzing 150
out of 433 Munsell chips Jozef Cohen [7] concluded that
their reflectance depends on three components. Among
later studies of the Munsell colours, Eem et al. [8] pro-
posed four, Maloney[9] proposes five to seven, Burns[3]
proposes five to six, Lenz et al. [10] use six, Parkkinen et
al. [11] and Wang et al. [12] argue that eight components
are necessary and in a recent study Hardeberg [13] demon-
strated that as many as 18 basis functions are needed. The
reason behind the discrepancies between these studies is
that different authors use different thresholds for the re-
quired similarity between the original and reconstructed
data.

There are two main drawbacks with basing our esti-
mate for the number of sensors needed in multispectral
imaging devices on the aforementioned studies. Firstly, the
basis functions derived in those studies do not correspond
to physically feasible sensors [14]. Secondly, the data is
assumed to be noise-free; an assumption which is not jus-
tified in an actual imaging system where many types of
noise are known to corrupt the response data [15]. Hence,
in this paper we present two methods to derive physically
feasible sensors such that they are optimised to record and
reproduce the spectral data. Using the spectral curves of
these sensors we are able to synthesise their responses to
a database of Munsell reflectance spectra [11]. Doing so
allows us to add educated levels of quantisation and shot
noise [15], which makes it possible to study the efficacy
of increasing the number of sensors in the imaging device
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without having to assume perfect noise-free conditions.
Finally, the sensor design methods presented in this pa-

per are derived such that, in the absence of noise, an in-
creasing number of sensors is guaranteed to improve the
reflectance estimates. Choosing sensors with this property
allows us to concentrate on the question of the minimum
number needed rather than the spectral properties of the
sensors. In other studies that include variable numbers of
sensors, among other factors, the sensors are often chosen
to have arbitrary characteristics [4, 16]. As a result the
effect of sensor number is confounded by the particular
sensor characteristics chosen.

In the first section of this paper we review the princi-
ples of reflectance recovery and examine the role of sur-
face smoothness in choosing the number of sensors in an
imaging system. In Section 3 we introduce methods for
deriving physically feasible sensors that are optimised for
spectral recovery. We use these sensors in computational
experiments described in Section 4 to assess the effect of
sensor number on reflectance recovery in the presence of
noise. In Sections 5 and 6 we present results that suggest
that sensor noise provides a natural limit to decide the best
number of sensors.

Background

By assuming that all surfaces are Lambertian, and that
there is no fluorescence, the response of a digital camera
at a single pixel can be modelled by Equation 1:

qi =

∫

λ

Qi (λ) E (λ) R (λ) dλ (1)

where qi is the response of the ith sensor (i = 1, . . . ,P ),
Qi (λ) is the ith sensor response function, E (λ) is the
spectral power distribution of the illuminant and R (λ) is
the surface spectral reflectance function. Note that we are
neglecting noise for the time being.

These continuous functions can be sampled at a num-
ber of discrete wavelength intervals n without a significant
loss of accuracy, providing that the interval is sufficiently
small [17]. In this work we sample functions on the range
from 400 nm to 700 nm at 10 nm intervals, thus n = 31.
With this in mind Equation 1 can be rewritten as:

qi =
∑

λ

Qi (λ) E (λ)R (λ) ∆λ (2)

This discrete sum is more conveniently expressed in terms
of matrix-vector notation, thus we write:

q = QTr, (3)

where q is a p × 1 vector of sensor responses and r is an
n × 1 reflectance vector. For compactness we represent

the product of each sensor response function Qi (λ) and
the illuminant E (λ) as a single vector which forms the ith

column of the n × p sensor matrix Q.
The problem of recovering reflectance from camera re-

sponses can now be expressed as the problem of estimat-
ing the n × 1 vector r given the p × 1 vector of camera
responses q and the matrix Q. This is a system of p lin-
ear equations in n unknowns. For an exact solution it is
sufficient to set the number of knowns equal to the num-
ber of unknowns, i.e to use p = 31 independent sensors in
the imaging system. However, such a large number of sen-
sors may not be necessary for reflectance recovery. Real
reflectance spectra are known to be strongly constrained
and may be represented accurately with fewer than 31 pa-
rameters [13]. A convenient way to express this is to write
reflectance as the weighted linear sum of a small number
of basis vectors [9], i.e.

r =
m∑

i=1

biωi (4)

where bi are the basis vectors, ωi are the respective weights
and m � n. This relation can be expressed in matrix vec-
tor notation thus:

r = Bω (5)

where the columns of B are the basis vectors and ω is a
vector of weights. Replacing Equation 5 into Equation 3
gives:

q = QTBω. (6)

This is a system of p equations in m unknowns. To solve
uniquely for ω, and therefore r, it is sufficient to set the
number of independent sensors p = m. Providing that
QTB is invertible we can solve for the ω as follows [18,
19]:

ω =
(
QTB

)−1

q. (7)

The principal problem with this approach is that it is not
straightforward to determine an objective value for m , and
therefore p. In order to understand this it is necessary to
consider how to derive m from a statistical analysis using
the singular value decomposition.

We can represent a set of k reflectance spectra as the
columns of an n× k matrix R. The singular value decom-
position of R is given by:

R = UΣVT (8)

where the matrices U and V are both orthonormal, i.e
UTU = VTV = I, and Σ is a matrix whose leading di-
agonal contains the singular values of R with zeros else-
where. The columns of U are the eigenvectors of the ma-
trix RRT and are referred to as characteristic vectors. The
characteristic vectors are a set of basis vectors for R that
are ordered such that the first vector accounts for the most
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variability in the data, the second accounts for the most
variability in the residual from the first vector, and so on.
Thus by increasing the number of characteristic vectors in
the linear model we are guaranteed to progressively im-
prove the reflectance estimate. Furthermore, the first m

characteristic vectors give the closest possible fit of a lin-
ear model for any given value of m.

Although, by increasing the number of bases m in the
linear model, the approximation can always be improved,
the inherent smoothness of reflectance spectra determines
that there is a point when increasing m results in very small
improvements in accuracy. Generally m is estimated as
the point when the small improvement drops below some
arbitrary threshold. However, if we intend to use m to de-
termine the number of sensors in a multispectral imaging
system, then we must consider the point when the improve-
ment in the accuracy of the linear model is cancelled by
the detrimental effect of imaging noise. In order to assess
the role of noise we need to make a real set of sensors to
capture the data in typical noise conditions. This requires
that we choose the sensor functions carefully, according
to objective criteria[20]. Different sensor characteristics
capture different information, and hence result in differ-
ent reflectance estimates for the same sensor number. By
not choosing carefully, the effect of increasing the number
of sensors, and hence parameters in the linear model, will
be confounded with the sensor characteristics. We would
therefore like to choose sensors that are optimised for spec-
tral recovery and thus guarantee that, in the absence of
noise, increasing the number of sensors results in decreas-
ing error. In order to do this we should choose sensors Q

whose columns span the same vector space as the first m

characteristic vectors[21].
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Figure 1: The first four characteristic vectors of the Munsell re-
flectance data.

Non-negative sensors

To guarantee that we choose the sensors to be within a lin-
ear transform of the basis vectors we must choose Q such
that it satisfies the following relation:

Q = BA (9)

where A is a linear transformation and B contains the first
m characteristic vectors of R as columns. Initially, one
might consider using the characteristic vectors themselves
as sensors, i.e. let A be the identity matrix. However,
as can be seen from Figure 1, the characteristic vectors
contain many negative values, yet real sensors must be
everywhere non-negative. Further, the modulation of the
characteristic vectors is proportional to their order, i.e. ad-
ditional vectors have an increasing number of peaks and
troughs. It is therefore desirable to transform these vectors
into a non-negative vector space, such that their individ-
ual sensitivities are concentrated in distinct regions of the
visible spectrum. For example, in a trichromatic camera
system the sensors are commonly chosen to be red, green
and blue. Finally, the transformed vectors should ideally
span the same space as the original.

Given these criteria, we would like to find the best
transform A to solve for the sensors Q. In this paper we
propose to solve this problem using the varimax rotation
algorithm described in[22, 23]. Starting from the n × m

bases matrix B, with elements bjk, the varimax criterion is
given by:

V (B) =
∑

k




1

n

∑

j

b4

jk −


 1

n

∑

j

b2

jk




2

 (10)

Verbally, Equation 10 is the columnwise variances of the
squared elements of B. Given the varimax criterion in
Equation 10, the optimal transform A in Equation 9 is any
orthogonal rotation of B that maximizes the varimax cri-
terion among all other orthogonal rotations. Constraining
A to be an orthogonal transform means that the resultant
sensors Q are themselves orthogonal. Maintaining the or-
thogonality of the sensors is important, as it makes the re-
covery of reflectance from their output maximally robust to
sensor noise[24]. The sensors generated by this procedure
are shown in Figure 2.

The sensitivity of each sensor is clearly focussed in
a different region of the visible spectrum. However, the
rotated vectors still contain some negative lobes, which
means that they cannot be used as sensors. We therefore
choose everywhere non-negative sensors that are as close
as possible to the rotated sensors, denoted Q̂, but still within
a linear transform of B. Denoting Q̂i as the ith column of
Q̂, we can do this sequentially for the ith sensor by solving
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Figure 2: The first four characteristic vectors rotated by the vari-
max algorithm to be maximally positive
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Figure 3: Non-negative sensors formed by varimax rotation with
added positivity constraint

the following optimisation problem:

min
gi

‖Q̂i − Q̂igi‖
2 subject to Q̂igi ≥ 0 (11)

where gi is a p × 1 vector and 0 is a vector of zeros. This
results in the sensors shown in Figure 3, termed here the
varimax sensors.

In earlier work Piché[25] generates non-negative com-
binations of the characteristic vectors that explicitly max-
imise the mutual orthogonality of the sensors. He points
out that the orthogonality of the sensors can be measured
directly by the condition number of Q, where the condi-
tion number is given by:

cond (Q) = ‖Q‖
2
‖Q†‖

2
. (12)

Here ‖ · ‖2 denotes the spectral norm of a matrix, which
is given by its largest singular value, and † denotes the
pseudoinverse operation. Given that the characteristic vec-
tors are guaranteed to be orthogonal, the condition number

of Q is determined solely by the condition number of A.
Piché therefore generates transformations of the character-
istic vectors that explicitly attempt to minimise the con-
dition number of A. That is, he minimises the following
objective function:

min
A

‖A‖2‖A
†‖2 subject to Q = BA ≥ 0 (13)

where 0 is a matrix of zeros. This optimisation problem
that can be tackled directly by using iterative non-linear
optimisation methods. Sensors generated using this pro-
cedure, termed here Piché sensors, are shown in Figure 4.
Note the similarity between the sensors in Figure 4 and
those generated by the varimax procedure in Figure 3. We
also find that the varimax and Piché procedures generate
sensors with equally low condition numbers, even though
Piché minimises condition number explicitly.
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Figure 4: Non-negative sensors formed by Piché’s procedure

Method

To generate each set of p sensors we choose the first p

characteristic vectors of a set of 1269 Munsell reflectance
spectra [11] and transform them into non-negative sensors
using both the Piché and varimax procedures. We use the
synthesised responses of these sensors to assess the effect
of increasing sensor number, from 3 to 15 sensors, on re-
flectance recovery performance in the presence of noise.
Synthetic camera responses are generated according to the
following camera model:

q = QTr + nshot + nquant (14)

where the vectors nx denote sources of noise. Shot noise
nshot arises from the inherent uncertainty in the genera-
tion, reflection and capture of light. This is a Poisson
process[15], thus the variance of the shot noise component
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increases with increasing input intensity. We have mod-
elled this using multiplicative Gaussian noise thus:

nshot = [ζ1q1, ζ2q2, . . . , ζpqp]
T (15)

where each of the ζi is a pseudorandom variable taken
from a Gaussian distribution with zero mean and variable
standard deviation and qi represents the ith sensor response.
Quantisation noise nquant is incorporated by directly quan-
tising the simulated responses after the application of shot
noise. Other sources of noise, such as dark noise, are as-
sumed to be negligible or corrected for.

In all calculations the equal energy illuminant E is used
and the columns of Q all sum to 1, thus ensuring a camera
response of 1 to a perfect reflecting diffuser. Reflectance
is estimated from camera responses using Equations 7 and
5. The difference between original and estimated spectra
is measured in terms of absolute route-mean-squared error,
given by:

rms =

√
(r − r̂)

T
(r − r̂)

n
(16)

where r̂ is the reflectance estimate and r is the original.

Simulation results

Results for different sensor numbers with 1% shot noise
and 12 bit quantisation are shown in Figure 5 along with
noise-free estimation results. When there is noise in the
sensor responses the recovery error does not decrease mono-
tonically with increasing sensor number as it does when
there is no noise. Minimum error is reached at 11 sensors
and 9 sensors for the varimax and Piché methods respec-
tively, although the varimax sensors show little improve-
ment beyond 9 sensors. Recent measurements of noise
levels in a trichromatic camera suggest shot noise to be
around 1-2% of the overall signal[26] thus results with 2%
shot noise are shown in Figure 6. The overall RMS error is
high, relative to the 1% case. However, the point at which
minimum error occurs is still around 9 sensors. Clearly
now, increasing the number of sensors beyond 9 is detri-
mental to performance. In results not shown here we also
found that this limit holds using a least squares minimiser
to recover reflectance, instead of Equations 7 and 5.

Discussion and conclusions

In these experiments we have used carefully chosen sen-
sors that are both optimised for recovering the Munsell
reflectances and are maximally robust to noise. We have
used these to find the minimum number of sensors such
that they provide minimal reconstruction error. Using fewer
sensors leaves potential room for improvement, whereas
using more sensors does not decrease RMS error due to
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Figure 5: Effect of increasing sensor number with 12 bit quanti-
sation and 1% shot noise

the effect of noise. In the typical noise environment in-
vestigated here we find that the limit occurs at approxi-
mately 9 sensors, although we expect this value to change
for different noise levels. This value corresponds to pre-
vious estimates of the dimensionality of this dataset made
using different decision criteria by Parkkinen et al.[11] and
Wang et al. [12]. In further work we will extend this anal-
ysis to a greater number reflectance datasets.
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