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Abstract 

We investigate the hypothesis, recently published in Nature, 
that the human visual system may  use some sort of 
luminance-redness correlation2 together with the scene 
average for illuminant estimation. We found this idea 
interesting but not thoroughly tested. In particular, tests on 
real images were limited to scenes made up artificially from 
hyperspectral data,4 spectral power distributions of various 
daylight illuminants, and the human cone sensitivity 
functions. The Ruderman database4 of hyperspectral images 
is also quite peculiar because it consists of a small number of 
images of mostly foliage. Our experiments show that for 
scenes composed from a more diversified hyperspectral 
database combined with real illuminant spectra, the predicted 
correlation turns out to be very weak. For actual digital 
camera images, the luminance-redness correlation fails 
completely. 

Introduction 

Macleod and Golz recently proposed1,2 that second-order 
statistics of image colors arising from the interplay between 
surfaces and illuminant in a scene could yield useful 
information about the illuminant color in real images. The 
simple mean color statistic used in the gray world 
assumption can not distinguish between a reddish room in 
white illumination versus a white room under reddish 
illumination. The luminance-redness correlation computed 
across all pixels in the scene could potentially be a 
distinguishing factor between the two scenes. Because of the 
distribution of the natural illuminants on the red-blue axis 
(often referred to as “warm” for reddish versus “cold” for 
bluish illuminants), a redness component of the illumination 
would account for most of its variation in chromaticity for 
natural light sources. In a series of experiments, we test the 
Macleod-Golz hypothesis as described in Nature postulating 
the existence of a luminance-redness correlation and find that 
the correlation, in fact, is very weak. 

In probability theory, the correlation (or correlation 
coefficient) between two variables is defined as the ratio of 
their covariance by the product of their standard deviation. 
The correlation can vary from 1, in case of an increasing 
linear relationship, to -1 in case of a decreasing linear 

relationship. A zero correlation indicates that the two 
variables are independent. 

In essence, the luminance-redness correlation is 
supposed to give insight as to the color of the illuminant, 
much the same as the gamut of observable colors under the 
current scene gives clues about the departure from the 
canonical gamut.5 In fact, Mausfeld and Andres3 propose that 
the mean and the covariance matrix, as first and second-order 
statistics respectively, may give valuable information about 
the shape and form of this gamut. Experiments by MacLeod 
and Golz1,2 on images synthesized from a small hyperspectral 
database4 of 12 images indicate that the luminance-redness 
correlation could be used, together with the mean of the 
sensor responses across the image, to disambiguate between 
reddish scenes under white light and white scenes under 
reddish light (Figure 1). 
 

mean 

luminance-redness 
correlation 

red illuminant 

white illuminant 

ambiguity from mean 
 

Figure 1. Luminance-redness correlation used in conjunction with 
the mean redness to determine the illuminant redness 

 
In a two-dimensional space defined by the luminance-

redness correlation and the mean image redness, the 
probability distribution of the white illuminant scenes can 
actually be distinct from the probability distribution of the 
red illuminant scenes. On the mean redness axis alone, there 
is a region where the two probability distributions overlap. 

MacLeod and Golz use a logarithmic cone excitation 
space and define luminance as the sum of responses in the 
long and medium cones. The redness is defined as the 
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luminance-normalized response in the long cone. Our 
experiments use the same definitions. 

Is this method robust enough to be a good theory of 
human perception and does it work well to be used for 
automatic white-point estimation and color balancing in 
digital photography? We have devised several sets of 
experiments in which to measure the luminance-redness 
correlation on real images. Experiments 1-4 are done on 
images synthetically generated from real hyperspectral data 
and full spectral information of illuminants. For experiment 5 
we use real images from the calibrated SFU dataset6 and for 
experiment 6 we used the SFU large database.7 In all the 
cases, we compute the luminance-redness correlation for 
each image of a scene under a certain illumination condition 
and then the correlation of the whole cluster of images under 
any given illumination. 

Experiment 1 
For this experiment, images were generated using the 

hyperspectral database collected by Ruderman et al.4, and 
standard illuminants D40, D55, D85 and D200. This is a 
replication of the experiment on “real” data reported by 
MacLeod and Golz.1,2  

Experiment 2 
Here, images were constructed from the hyperspectral 

database8 collected by Nascimento et al. and standard 
illuminants D40, D55, D85 and D200.  

Experiment 3 
For this experiment, we used the Ruderman 

hyperspectral database and the following four illuminants 
from the SFU calibrated database6: Philips Ultralume Tube, 
Sylvania Cool White Tube, Sylvania Warm White Tube and 
Solux 4700K with full Blue 3202 filter. 

Experiment 4 
In this case, the images were constructed from the 

hyperspectral database by Nascimento et al.8 and the 
following four illuminants from the SFU calibrated 
database6: Philips Ultralume Tube, Sylvania Cool White 
Tube, Sylvania Warm White Tube and Solux 4700K with 
full Blue 3202 filter. 

Experiment 5 
We used real images of 8 scenes from the “Mondrian” 

set of the calibrated database of images from the SFU 
calibrated dataset6 acquired with the Sony DXC-930. These 
indoor scenes were taken under controlled laboratory 
conditions in which the spectral power distribution of the 
illuminant is measured. The “Mondrian” set consists of 
images with minimal specular reflections. We used the same 
set of four illuminants as in the previous experiments using 
the SFU dataset.  

Experiment 6 
In this experiment we tested the luminance-redness 

correlation on the real images in the large database acquired 

with the Sony VX-2000 video camera.7 These images 
represent mostly natural scenes, both indoor and outdoor. 
This database contains a description of illuminant 
chromaticity in each of the scenes, given in camera RGB 
coordinates. Unlike the first five experiments, here we do not 
have the same scene available under multiple illuminants. 
We simply make two large classes of illuminants labeled 
“red” and “neutral” based on the information about the 
illuminant chromaticity available in the database about each 
image. 

Results on Real Images 

The first experiment consists of reproducing the results on 
the Ruderman hyperspectral database under illuminants D40, 
D55, D85 and D200 using the human cone sensitivities.9 We 
see a strong correlation between luminance-redness 
correlation and mean redness of the scene. The values for the 
correlations are respectively: -0.56, -0.65, -0.65, -0.55 and 
are in accordance to the values reported by MacLeod and 
Golz.1,2 These values are significantly different from zero 
and so they indicate a strong correlation. Figure 2 shows the 
Ruderman database of hyperspectral images, and Figure 3 
illustrates the results of experiment 1. 

 
 

   

   

   

   

Figure 2. Hyperspectral database of 12 images by Ruderman et al 
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Figure 3. Experiment 1 in luminance-redness correlation. The 12 
images are represented by black diamonds (illuminant D40), blue 
triangles (D55), pink circles (D85) and red squares (D200).  

 
 
We believe that the dataset chosen for the original 

experiments by MacLeod and Golz was somewhat limited. It 
mainly contains images of scenes with foliage. In the second 
experiment, we used the 8 images from the hyperspectral 
database by Nascimento et al.,8 which is more balanced. 

 
 

    

    

Figure 4. Hyperspectral database of 8 images by Nascimento et al. 

 
 
 

In this case, we found lower correlation scores for each 
cluster of images. The values are -0.40, -0.25, -0.09 and 0 
respectively for the illuminants D40, D55, D85 and D200. 
The results are illustrated in Figure 5.  

Experiments 3 and 4 are similar to experiments 1 and 2 
respectively, with the exception that four real illuminants 
have been used instead of the ideal daylight sources 
proposed by Macleod and Golz. For experiment 3, the results 
are illustrated in Figure 6. The values for the correlations are 
-0.62, -0.47, -0.31, -0.20. While the pattern of correlation is 
still visible in experiment 3, this pattern is hardly visible in 
experiment 4 (see Figure 7). In this case, the correlation 
values are much lower: 0.28, 0.18, -0.01, 0.12 and in this 
case the luminance-redness correlation is virtually non-
existent. 
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Figure 5. Experiment 2 in luminance-redness correlation. The 8 
images are represented by black diamonds (illuminant D40), blue 
triangles (D55), pink circles (D85) and red squares (D200) 
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Figure 6. Experiment 3 in luminance-redness correlation. We used 
the same database of hyperspectral images as in Experiment 1, but 
with the set of four illuminants from the SFU database. 
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Figure 7. Experiment 4 in luminance-redness correlation. We used 
the hyperspectral database from Experiment 2, but with the SFU 
set of illuminants. 
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We used the hyperspectral database from Experiment 2, 
but with the SFU set of illuminants. 

Experiments 5 and 6 are based on real images. Eight 
scenes from the SFU database6 have been used in experiment 
5, under each of the four chosen illuminants. In this case, the 
correlation values are even lower: 0.11, 0.19, -0.03, 0.21 (see 
Figure 8). For this experiment we also note that there is 
effectively no luminance-redness correlation. Experiment 6 
uses the SFU large database of images.7 The experiment 
differs from experiments 1-5 in that it is not based on having 
the same scene viewed under different illuminants. Here, we 
are simply interested in the probability distribution of scenes 
under “reddish” versus a “neutral” illuminant. A “reddish” 
illuminant is defined as having an r chromaticity component 
greater than 0.4. A “neutral” illuminant is defined as having 
an r chromaticity component less than 0.3.  

It is worth mentioning that the major variability in the 
illuminant chromaticity is expressed by the red-blue 
component (r chromaticity). The probability distribution is 
shown in Figure 10. Here, we are looking for the pattern 
shown in Figure 11, which represents the ideal probability 
distribution in order for the luminance-redness correlation to 
be effective in illuminant estimation. Instead, the correlation 
values are –0.10 and 0.19 respectively. These results indicate 
that the luminance-redness correlation is again non-existent. 
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Figure 8. Experiment 5 in luminance-redness correlation. These 
are real images of the same scene under different illuminants. 

 

    

    
Figure 9. Experiment 5: the 8 scenes from the SFU database 
viewed under a canonical white illuminant. 

 

Figure 10. Experiment 6. The probability distribution of scenes 
under neutral (black crosses) and reddish illuminant (red stars) 

Conclusion 

We report a negative finding: Although it is possible to 
replicate the MacLeod-Golz experimental results showing 
luminance-redness correlation, their theory does not hold 
under more rigorous testing. The theory is attractive in that it 
relates the gray world method, which is based on the scene 
average alone, to the more advanced algorithms for 
illuminant estimation such as gamut mapping5 and color by 
correlation.10 However, the tests reported here show that the 
hypothesized luminance-redness correlation does not occur 
even on a second set of hyperspectral images. Furthermore, 
when testing with spectra of real light sources instead of 
ideal illuminant spectra, the correlation is even less 
pronounced. In the case of real digital camera images, the 
correlation does not exist at all. 
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