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Abstract

Colour constancy is a central problem for any visual sys-
tem performing a task which requires stable perception of
the colour world. To solve the colour constancy problem
we estimate the colour of the prevailing light and then, at
the second stage, remove it.

Two of the most commonly used simple techniques
for estimating the colour of the light are the Grey-World
and Max-RGB algorithms. In this paper we begin by ob-
serving that this two colour constancy computations will
respectively return the right answer if the average scene
colour is grey or the maximum is white (and conversely,
the degree of failure is proportional to the extent that these
assumptions hold). We go on to ask the following ques-
tion: “Would we perform better colour constancy by as-
suming the scene average is some shade of grey?”. We
give a mathematical answer to this question. Firstly, we
show that Max-RGB and Grey-World are two instantia-
tions of Minkowski norm. Secondly, that for a large cali-
brated dataset L6 norm colour constancy works best over-
all (we have improved the performance achieved by a sim-
ple normalization based approach). Surprisingly we found
performance to be similar to more elaborated algorithm.

Introduction

The colour of an object depends on the spectral power dis-
tribution of the incident light as well as on the reflectance
property of the object’s surface. The human visual system
is able to deduce a stable descriptor of the object’s colour
independent of the illumination. In digital photography
we would also like to have colour constancy: we would
like to remove the cast due to illuminant from images prior
to display or printing them.

Mean and maxima play an important role in perceptual
processing and computer vision. For example, the adap-
tation of the eye to the brightness of the prevailing light
field is relative to the mean brightness [1] and maxima
also mediate colour perception [2]. So it is, perhaps, not
surprising that Grey-World and Max-RGB, widely used
algorithms for colour constancy, are based on these con-
cepts. In the former the estimate of the colour of the light
is the average RGB in the image and in the latter it is the

maximum R, G and B.
The starting point of this paper is that when we con-

sider a number of samples in a distribution, the mean and
the maximum are returned respectively by the two ex-
tremes in the Minkoswki family norm, i.e. the L1 and
L∞ norms, normalized by the number of samples. Since
for every p ≥ 1, the Lp norm (the pth root of the sum of
samples raised to the power p) will return an answer some-
where in between this two extrema, we wondered whether
any of them might give reasonable estimates for the illu-
minant colour. In effect we suggest a new approach for
estimating the illuminant, based on a different assumption
on the scene average.

Our new algorithm based on the norm p was tested
on the Simon Fraser Image Database. The results show
that usually every norm p works better than Grey-World
or Max-RGB algorithm and in particular the best perfor-
mance is obtained for p = 6.

Perhaps, is this result not too surprising? First we note
that it is easy to find cases where Grey-World works better
than Max-RGB and vice versa. So a norm based some-
where in between should, on average, give better perfor-
mance. Second, the larger that p becomes, the more im-
portant bright pixels become in an image and it can be ar-
gued that whites and bright chromatic colours tell us more
about the prevailing light. Yet, we shy away from the max-
imum because in a statistical sense it is a fragile measure.
It is for example unreliable when pixel are clipped.

In section 2 we present the Grey-World and the Max-
RGB algorithms. In section 3 the Minkoswki family norm
is introduced. Experiments and results are reported in sec-
tion 4.

Background

A Lambertian surface with reflectance S (λ) (where λ is
wavelength) illuminated by a spectral power distribution
E (λ) reflects the colour signal C (λ)

C (λ) = E (λ)S (λ) . (1)

A digital colour camera typically samples the incoming
signal with three different classes of sensors (red, green
and blue), so that the response by the sensor (R, G, B)
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is equal to the integral over the visible spectrum ω of its 
sensitivity function (R(λ), G(λ), B(λ)) multiplied by the 
incoming signal: 
 

        (2) 
 
In colour constancy we attempt to calculate E(λ) given only 
image RGB’s. Or, as an easier alternative, to estimate the 3-
dimensional vector [ReGeBe]

T corresponding to the RGB of 
the prevailing light. 

Buchsbaum [3] made the assumption that the average 
reflectance of all surfaces in a scene is achromatic. If this 
Grey-World hypothesis holds, then the average colour of the 
light leaving the surfaces in a scene will be the colour of the 
incident light. To see that, let an image I be represented by 
three N-dimensional vectors R[R1 …RN]T, G[G1…GN]T, B 
[B1…BN]T, where 
 

       (3) 
 
If g (λ) = k is a grey surface, i.e. all wavelengths reflect the 
kth part of the light, so 
 

      (4) 
 
the colour of that surface is exactly the colour of the light. 
Now assume that the scene average is grey, i.e. 
 

       (5) 
 
Now the average for the red channel is: 
 

      (6) 
 

 

Figure 1. The figure shows a unit ball in ,R2
+  that is the set of all 

positive points whose distance from the origin is less than or equal 
to one. 

 
 

We draw attention to the value of k in equation (4). It 
tells us we can recover the light colour up to some 
multiplicative constant. This is normal in colour constancy 
research. It is hard to discriminate between bright lights 
impinging on dark surfaces and the converse. Let us now 
consider the Max-RGB approach. In an early version of 
Land’s [4] retinex algorithm it is tacitly assumed that every 
image contains a white surface. Furthermore this patch is 
assumed to be the maximally reflective surface in the scene, 
so that its location can easily be found by searching for the 
maximum response in every single channel. Let w(λ) = 1 a 
white surface, i.e. all wavelengths reflect 100% of the light, 
then 

      (7) 

that is the RGB of that patch equals the colour of the incident 
light. 

Of course the average reflectance in a image is not grey 
and white is not always present. So, Grey-World and Max-
RGB colour constancy algorithm can fail. However, given 
the simple statistical formulation, it is perhaps surprising 
how well they can work. Moreover, of importance to this 
paper, the results are not always correlated: Max-RGB can 
give good result when Grey-World fails and vice versa. 
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Figure 2: The figure shows the angular error of the group A
images for 30 values of p; in particular for p from 1 to 29 and
p = ∞.

The Minkowski family norm

Let X = [X1...XN ]T a vector in RN . For every p ≥ 1
the quantity

‖X‖p =

{
N∑

i=1

|Xi|p
}1/p

(8)

defines a norm on RN because of the Minkowski inequal-
ity [5]: {

N∑
i=1

|Xi + Yi|p
}1/p

≤

{
N∑

i=1

|Xi|p
}1/p

+

{
N∑

i=1

|Yi|p
}1/p

.

Thus, depending on the chosen p, there is a different def-
inition of the distance between two points, or the length
of the vector X . There are some useful relationship be-
tween these norms. First of all it is easy to see from figure
1 that ‖X‖q ≤ ‖X‖p for every p ≤ q, then the sequence
αn = ‖X‖n is monotonically decreasing. The limit is
also a norm, called norm infinity and is equal to the maxi-
mum of the coordinates:

‖X‖∞ := lim
n→∞αn = max

i≤N
|Xi| . (9)

It is also true that for every p ≤ q,

‖X‖p

N1/p
≤ ‖X‖q

N1/q
. (10)

Given N sample values {X1, ..., XN}, for every p ≥ 1 we
can calculate the quantity

µp (X) =
‖X‖p

N1/p
. (11)
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Figure 3: The figure shows the angular error of the group B
images for 30 values of p; in particular for p from 1 to 29 and
p = ∞.

Therefore, for equation (10), µp is a monotonically in-
creasing sequence. We see that µ1 (X) = mean (X)
and µ∞ (X) = maxi |Xi|. If the samples are the data of
a colour image, then the vector [µ1 (R)µ1 (G)µ1 (B)]T

corresponds exactly to the estimated illuminant whether
the Grey-World algorithm is used. On the other hand, with
Max-RGB computation the evaluated light is the vector
[µ∞ (R)µ∞ (G) µ∞ (B)]T .

The p shade of grey algorithm evaluates the RGB of
the unknown illuminant whit the p norm of the data, that
is

R = µp (R) ,
G = µp (G) ,
B = µp (B) .

(12)

Yet, under which assumptions does this computation re-
turn the correct result? We give a mathematical answer,
explaining how the scene average is a shade of grey. In
particular we will show that the following relationships:

µp (R) = k
∫

ω
E (λ)R (λ) dλ,

µp (G) = k
∫

ω
E (λ)G (λ) dλ,

µp (B) = k
∫

ω
E (λ) B (λ) dλ

(13)

are valid when the scene average of a modified version of
the original image is grey.

First of all we apply a (non linear) invertible transfor-
mation at every single pixel in each channel. Moreover we
consider the inverse transformation applied to the illumi-
nant. Then, with respect these conditions, we assume that
the scene average is grey. The following diagram repre-
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sent the process in a schematic way.

I
f−→ f (I)

↓ gw

[g (R) g (G) g (B)]
f−1=g←− [R G B] .

(14)

If we choose as function f the raising to the power p (and
g is the pth root), thus the equations (13) are satisfied. In
fact, let consider the image Ip such that Rp,i = (Ri)

p,
Gp,i = (Gi)

p and Bp,i = (Bi)
p. Let Ep (λ) the illumi-

nant so that each component of the correspondent RGB
vector (using the same digital camera sensitivities) is the
unknown illuminant raised to the power p; for example for
the red component we have:

Rp =
∫

ω

Ep (λ)R (λ)dλ =
{∫

ω

E (λ)R (λ)dλ

}p

. (15)

Consequently to solve the colour constancy problem for
the image I , determining the RGB of the illuminant E (λ)
it is enough working out the RGB of the illuminant Ep (λ).
Hence let σp (λ) the function vector of the surface reflectan-
ces associated with the image Ip and the illuminant Ep (λ)1:

Rp,i =
∫

ω
Ep (λ)σi (λ) R (λ) dλ = Rp

i ,

Gp,i =
∫

ω
Ep (λ)σi (λ) G (λ) dλ = Gp

i ,

Bp,i =
∫

ω
Ep (λ)σi (λ) B (λ) dλ = Bp

i .

(16)

If the scene average of Ip is grey, i.e. µ
(
σp (λ)

)
= kp,

then we can apply the Grey-World algorithm to find the
vector [RpGpBp]

T :

µ1

(
Rp

)
= kpRp,

µ1

(
Gp

)
= kpGp,

µ1

(
Bp

)
= kpBp.

(17)

Because µ1

(
Rp

)
= {µp (R)}p (and also for the green

and the blue coordinates), it follows that equations (13)
are satisfied. Since the Grey-World technique usually does
not give the value of the constant kp, the p shade of grey
algorithm do not recover the intensity of the illuminant.

Note we do not set forth any technical argument to
support the idea that µ

(
σp (λ)

)
= kp holds more for some

p than others. But we do test this in the next section.

Experiments and results

To investigate the performance of the p norm algorithms
we tested them on a large dataset made up of many colour-
ful objects measured under different lights whit a cali-
brated camera [6]. In particular we consider two distinc-
tive collections: one consisting of 321 images of a vari-
ety of 32 scenes and another of 220 images of a variety

1Note, we do not actually specify how to find Ep (λ) or σi (λ). But,

since
[
Rp

i Gp
i Bp

i

]T are 3-dimensional vectors, we can find the required
form using standard techniques.

of 22 scenes, both groups taken under 11 coloured illu-
minant. Details about the images, how they were col-
lected and the illuminants measured can be found in [6]
and in [7] chapter 11. All images are available on-line [8].
We call group A the 321 images [9] and group B the 220
images [10]. In both sets each image is stored with the cor-
rect light RGB measurement. Thus we can assess a colour
constancy algorithm by determining how close the esti-
mated light colour is to the measured one. Here we com-
pare measured and estimated light illuminants using an an-
gular measure. Given the image with the measured light
q

L
= [Rl Gl Bl]

T , we run the colour constancy algorithm

to recover the estimated illuminant q
E

= [Re Ge Be]
T .

The error is then

ang err = angle
(
q

l
, q

e

)
=

cos−1
(
q

l
· q

e

)
∣∣∣q

l

∣∣∣ ∗ ∣∣∣q
e

∣∣∣ . (18)

We also calculate the distance error in the chromaticities
space r = R/(R + G + B) and g = G/(R + G + B):

dist err =
{

(rl − re)
2 + (gl − ge)

2
}1/2

. (19)

Both measures are, by choice, independent of intensity.
The results obtained are shown in the figures.
In figure 2 the mean of the angular error of the group

A images is plotted for 30 values of p; in particular for p
from 1 to 29 and p = ∞.

In the same way figure 3 shows the mean over all im-
ages in the group B. For both databases, the L6 norm per-
forms best. Note also that this is not a small effect: perfor-
mance is surprisingly better. The table 1 shows all results,
for both groups of images and for both error measures.

It is interesting to note that the performance of L6

norm can be compared with the results of algorithms that
make use of statistical information about the chromatic-
ities related to the illuminants. For example in [11] are
reported the mean angular errors for different algorithms
tested on the 321 images dataset. The value that we ob-
tained for the norm 6 algorithm is comparable to many
advanced colour constancy algorithm. With respect to the
results in [11] only one or two algorithms perform better.
Yet this improvement over prior approaches is achieved at
significant computational cost.

Conclusions

In this paper we have introduced a new technique for illu-
minant estimation. Exploiting the Grey-World algorithm
we have improved it with a different approach, based on a
simple normalisation. We have demonstrated the efficacy
of the p shade of grey algorithm by testing it on a set of
real images.

The relevance of our results is that we have achieved
the enhancement, keeping the simplicity of the Grey-World
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norm ang err dist err
p group A group B group A group B
1 9.78 8.27 0.0788 0.0624
2 8.32 9.24 0.0640 0.0668
3 7.22 8.45 0.0535 0.0593
4 5.59 7.93 0.0476 0.0549
5 6.33 7.72 0.0448 0.0530
6 6.29 7.71 0.0440 0.0527
7 6.42 7.83 0.0445 0.0533
8 6.64 8.01 0.0456 0.0543
9 6.86 8.21 0.0469 0.0555
10 7.06 8.38 0.0481 0.0566
11 7.23 8.53 0.0492 0.0576
12 7.37 8.66 0.0502 0.0584
13 7.49 8.76 0.0510 0.0590
14 7.59 8.85 0.0517 0.0596
15 7.68 8.92 0.0523 0.0601
16 7.76 8.99 0.0523 0.0605
17 7.84 9.04 0.0534 0.0609
18 7.91 9.09 0.0539 0.0612
19 7.97 9.13 0.0544 0.0615
20 8.04 9.17 0.0549 0.0618
21 8.10 9.20 0.0553 0.0620
22 8.15 9.23 0.0557 0.0622
23 8.20 9.26 0.0561 0.0624
24 8.25 9.28 0.0565 0.0626
25 8.30 9.30 0.0568 0.0627
26 8.34 9.32 0.0571 0.0629
27 8.38 9.34 0.0574 0.0630
28 8.42 9.36 0.0577 0.0631
29 8.46 9.37 0.0580 0.0632
∞ 9.16 9.77 0.0630 0.0659

Table 1: Results for the p shade of grey algorithm on two
databases considered: the firsts two columns are the mean of
angular errors and the lasts two report the distance error in the
chromaticities space.

algorithm and without using any sophisticated method. In
the future we will use the mathematical tool of the Minkow-
sky family norms in combination with more elaborate tech-
niques. We also believe that the Lp norms will prove in-
sightful in considering other aspects of colour processing.
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