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Abstract 

Color is of interest to those working in computer vision 
largely because it is assumed to be helpful for recognition. 
This assumption has driven much work in color based image 
indexing, and computational color constancy. However, in 
many ways, indexing is a poor model for recognition. In this 
paper we use a recently developed statistical model of 
recognition which learns to link image region features with 
words, based on a large unstructured data set. The system is 
general in that it learns what is recognizable  given the data. 
It also supports a principled testing paradigm which we 
exploit here to evaluate the use of color. In particular, we 
look at color space choice, degradation due to illumination 
change, and dealing with this degradation. We evaluate two 
general approaches to dealing with this color constancy 
problem. Specifically we address whether it is better to build 
color variation due to illumination into a recognition system, 
or, instead, apply color constancy preprocessing to images 
before they are processed by the recognition system. 

Introduction 

Color is of interest to those working in computer vision 
largely because it is assumed to be helpful for recognition. 
Color has been studied in detail for specific recognition 
tasks such as skin.1-3 Color is also possibly the most useful 
of the features typically used in content based image 
retrieval (CBIR) systems.4-7 In these systems the usual task 
is to find images in a database which are similar in 
appearance to a query image. There has also been much 
written about the similar endeavor of image indexing as 
suggestive of object recognition.8-13 This body of work is 
similar to CBIR in that an exemplar image is used for 
querying, but here the query image generally is thought to 
come from a database of single objects, typically on a 
controlled background which is easily removed by pre-
processing.  

 Conceptually, images which are examined for the 
presence of the object might contain it amid clutter. 
However, since the indexing paradigm makes queries based 
on the properties of an entire image, finding the object 

among clutter requires searching over image windows. 
These considerations are usually deferred,  and most work 
has been simply searching for “object images”.  Thus in 
practice, indexing is only suggestive of object recognition. 

Even if clutter is dealt with, there are still other key 
difficulties. First, while this form of recognition might be 
able to find a particular, known, multi-colored ball, it does 
nothing to help find a different multi-colored ball. More to 
the point, because there is no notion in the training set that 
these objects are of the same class, there is no way to learn 
the variance of the colors to be expected in the world of 
multicolored balls, nor to bootstrap the learning of shape 
which is essential for a general theory of recognition. 

A second problem surfaces when one tries to deal with 
illumination change. When objects and scenes are imaged 
under different lights their colors can change dramatically. 
This presents problems for color based indexing and 
recognition systems in general, and is a large part of the 
motivation for the large research effort on computational 
color constancy. In the case of indexing, the strategy is 
usually some form of normalization,9,11,12 where the database 
of object images which is searched is normalized for 
illumination change in a pre-processing step. The same 
normalization is applied to the object image or window 
thereof to be matched. For example, with the gray-world 
method, we assume that the average of any scene is a 
specific color (“gray”) and deviations from that statistic are 
due to illumination effects. Assuming the diagonal model of 
illumination change,14-17 image colors are then scaled 
independently so that the overall image is the specific gray. 
Notice that even if the process does not determine the actual 
illumination change, it can still work for indexing. The key 
point is that images are mapped into a different space where 
they can be matched regardless of whether there is a 
difference in their imaging conditions.  

The problem with normalization is that in order to deal 
with the illumination variation, useful information is 
discarded. For example, consider uni-colored objects. Grey 
world normalization maps them all into the same 
representations. Thus the system cannot distinguish between 
a blue ball and a white one. Nonetheless, for multi-colored 
objects the method can be effective because as the number 
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of colors increases, the space of possibilities increases 
rapidly because these methods typically take into account 
the relative amounts (histogram) of each color.  

One alternative is to assume that the objects in the 
reference dataset are all imaged under the same (canonical) 
illumination. Color constancy processing is then applied to 
the image under consideration, but not to any sub-windows 
tested for the object. If the image is only of a single  object 
(typical in research in this topic), then the situation is not 
much different than the previous case. However, if the image 
is a more complex scene (typical in many applications), then 
color constancy assumptions are likely to hold, and looking 
for the object in sub-windows might work. In this scenario, 
it is thus possible to distinguish a blue object from a white 
one, despite illumination change.  

A second alternative18-21 is to represent the range of 
colors possible under expected illumination changes for the 
objects of interest in the recognition system. This suggests a 
question we address below. Specifically, is it better to build 
color variation due to illumination into a recognition system, 
or to apply color constancy preprocessing to images before 
they are considered by the recognition system. 

In what follows we will review a recently developed 
model for recognition, and then use the performance of that 
model to quantify the effects of color spaces for recognition. 
Next we will consider how the performance of the system 
degrades with color variation. Then we will evaluate the two 
strategies for dealing with the degradation: simple color 
constancy pre-processing, and exposing the training of the 
model to illumination variation. 

Object Recognition as Translation 

We adopt a model of object recognition where words must 
be placed on image regions,22-24 illustrated in Figure 1. This 
is achieved in practice by exploiting large image data sets 
with associated text. Critically, we do not require that the 
text be associated with the image regions, as such data is 
rare. Considering processes which translate from images 
(visual representation) to words (semantics) gives a handle 
on a number of difficult computer vision problems. In part, 
this is because translation performance can be measured on 
a large scale, by comparing the proposed translation 
(predicted words) with the actual translation (associated 
text). In this work, we use word prediction performance to 
evaluate the efficacy of color spaces for recognition, as well 
as the two strategies discussed above for handling 
illumination variation. 

A number of methods have recently been described for 
predicting words from segmented images.22-25 For the results 
reported in this paper we use a special case of one of these. 
Specifically, we model the joint probability of words and 
image regions as being generated by a collection of nodes, 
each of which has a probability distribution over both words 
and regions. The word probabilities are provided by simple 
frequency tables, and the region probability distributions are 
Gaussians over feature vectors. We restrict the Gaussians to 
have diagonal covariance. 

Given an image region, its features imply a probability 
of being generated from each node. These probabilities are 
then used to weight the nodes for word emission. Thus 
words are emitted conditioned on image regions. In order to 
emit words for an entire image (auto-annotation), we simply 
sum the distributions for the N largest regions. Thus each 
region is given equal weight, and the image words are forced 
to be generated through region labeling. 

To be consistent with the more general models 
referenced above, we index the nodes by “levels”, l. Given a 
region (“blob”),  b, and a word w, we have 

 

∑=
l

bPlPlbPlwPbwP )()()|()|()|(   (1) 

where P(l) is the level prior, P(w|l) is a frequency table, and 
P(b|l) is a multivariate Gaussian over region features. To 
estimate the conditional density of words given blobs for the 
entire image these probabilities are summed over the N 
largest blobs. In the experiments reported in this paper, N 
was 8. 

The parameters of the model are estimated from the 
word-blob co-occurrence data using Expectation 
Maximization.26 In particular, we learn the level priors, P(l), 
the frequency tables for each level, P(w|l), and the means 
and the variances of the multivariate Gaussians for 
computing P(b|l). For all experiments reported in this paper 
we used 500 nodes. 

Experimental Protocol 

We used images from 160 CD's from the Corel image data 
set. Each CD has 100 images on one relatively specific topic 
such as "aircraft". From the 160 CD's we drew samples of 
80 CD’s, and these sets were further divided up into training 
(75%) and test (25%) sets. The images from the remaining 
CD’s formed a more difficult “novel” held out set. 
Predicting words for these images is difficult, as we can only 
reasonably expect success on quite generic regions such as 
“sky” and “water”—everything else is noise. 
 

 

Figure 1. Illustration of labeling. Each region is labeled with the 
maximally probable word, but a probability distribution over all 
words is available for each region. 
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Each such sample was given to each process under 
consideration, and evaluated on the basis of at least 1000 
images. The results of 10 such samples were further 
averaged. This controls for both the input data and EM 
initialization. Words occurring less than 20 times in the 
training set were excluded. The number of words in the 
vocabulary varied from 153 to 174 over the 10 runs. 

Images were segmented using Normalized Cuts.27 We 
used a modest selection of features for each region, 
including size, position, average region color, standard 
deviation of color over the region, average oriented energy 
(12 filters), average differential response of 2 different 
Gaussian filters, and a few simple shape features. The 
features were chosen to be consistent with recent work on 
linking words with images,23-25 where we purposely chose to 
represent color redundantly by (R,G,B), (r,g,S) defined by 
S=R+G+B, r=R/S, and g=G/S, and L*a*b. In the color space 
evaluation, we restrict the color features to be from only one 
of these choices. We normalize all features so that in the 
training data each has mean zero and variance one.  

Varying the Illumination 
Unfortunately, appropriate large scale data sets with 

controlled illumination variation are not available. As a 
compromise, we constructed a semi-synthetic data set as 
follows. We began with a comprehensive controlled 
illumination data set.28,29 This data set was constructed to be 
representative of the changes in illumination chromaticity 
generally encountered.  We scaled each pixel in those 
images so that the overall brightness, R+G+B was the same. 
We then computed the best, in the least squares sense, 3 by 3 
matrices mapping the images under each of the 11 
illuminants to one chosen canonical illuminant (Sylvania 
50MR16Q). (One of these matrices  is the identity). We then 
used these 11 matrices to simulate illumination changes in 
the Corel data set. For each image, we removed the gamma 
correction, scaled the overall brightness of each pixels so 
that all R+G+B were the same, applied one of the 11 
matrices to the (R,G,B), and then re-scaled the (R,G,B) so 
that it was set to the same value in the original image. We 
then computed images features for the images based on the 
new (R,G,B) values. This process produced  some (R,G,B) 
values which were above the usual maximum value of 255. 
When color constancy processing was applied to such 
images values over 255 were made available to that process, 
all pixel values were truncated to 255 before being used for 
recognition experiments. 

Our simulation of illumination change is only a gross 
approximation of what would occur if the illumination 
striking the scene underwent analogous changes. For 
example, the process makes no sense for sources, such as the 
sky. However, the procedure is more justified if we think of 
the “scenes” as being prints of the images, not the scenes 
themselves. The key point is that we want to capture the 
distribution of colors in a real data set which is also 
appropriate for large scale recognition experiments. 

Performance Measures  
Several ways to quantify word prediction performance 

have been proposed24 Here we use the simplest measure. 
Specifically, we allow the model to predict M words, where 
M is the number of words available for the given test image. 
In our data M varies from 1 to 5. The number correct 
divided by M is the score. 

We express word prediction relative to that for the 
empirical word distribution—i.e., the frequency table for the 
words in the training set. This reduces variance due to varied 
test sample difficulty. Exceeding the empirical density 
performance is required to demonstrate non-trivial learning. 
Doing substantially better than this on the Corel data is 
difficult. The annotators typically provide several common 
words (e.g. “sky”, “water”, “people”), and fewer less 
common words (e.g. “tiger”). This means that annotating all 
images with, say, “sky”, “water”, and “people” is quite a 
successful strategy. Performance using the empirical word 
frequency would be reduced if the empirical density was 
flatter. Thus for this data set, the increment of performance 
over the empirical density is a sensible indicator.  

Color Space Evaluation 

Color space choice is often difficult. Clearly, the choice 
should reflect the application. One issue is the degree to 
which the three values are correlated.  For example, in 
natural images, R, G, and B, tend to be quite correlated 
because variation in illumination intensity and direction 
(shading) tend to effect the three channels similarly. (r,g,S), 
where S=R+G+B, r=R/S, and g=G/S is less correlated. R, G, 
and B can be further decorrelated using PCA and ICA. 

A second issue is the degree to which the color space 
aligns with human perception. In computer vision, L*a*b is 
often used where the connection to human vision is weak. 
However, one could make a generic argument that the 
human vision system has evolved to accomplish tasks like 
the ones we are interested in, and that emulating it where 
possible makes sense.  

Since we have taken care to develop a comprehensive 
test strategy, we can evaluate which color space is best for 
our approach. Further, since our system focuses on the 
canonical computer vision task—linking image features with 
semantics—it is likely that our findings apply to other 
systems as well.  

We consider adding color as encoded in three different 
ways—straight RGB, L*a*b, and chromaticity with 
brightness, specifically, S=R+G+B, r=R/S, and g=G/S, in 
addition to using them all as in the original work.23-25 In all 
cases we used both the average color and its variance over 
the region, and we kept the number of features the same by 
duplicating the chosen color features appropriately. Word 
prediction performance using each color space is reported in 
Table 1. 

We found that using either L*a*b or (r,g,S) is 
substantially better than using straight RGB. The difference 
between using L*a*b and (r,g,S) was negligible. These 
results suggest that for our task, it is helpful to decorrelate 
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brightness and chromaticity, but beyond this step, color 
space may not be very important. 

The Effect of Illumination Variation 

To investigate the effects of illumination variation on our 
recognition system, we trained the models using images 
from the original Corel images, but tested on the images 
which had a simulated illumination change set by any of the 
11 possible ones in roughly equal proportions.   

The results  (Table 2, row 2) show that for this 
application, the range of illumination expected in natural 
images causes substantial degradation in performance. This 
is expected as color is an important cue for our system. 

Training with Illumination Variation 

Studying incorporating illumination variation into the 
training of the recognition system leads to an important 
design choice. It could be argued that the training set should 
consist of every training image from the previous 
experiment, but under each of the 11 illuminants, making the 
training set 11 times large. However, we would likely now 
require a larger model. Thus to avoid this confound, and to 
match the processing costs and model size with the other 
experiments, we trained the models on exactly the same 
number of images as before, and each image was subjected 
to one of the 11 illumination changes. Each of the 11 
illumination changes received roughly equal representation. 
This should not be an overly large burden, as the system 
learns from multiple examples—and now it simply sees 
more color variation in those examples. Recall from (1) that 
the variance of the feature is part of what is learnt by the 
system. 

The results  (Table 2, row 3) show that exposing the 
training process to the expected illumination variation is 
helpful, reducing the negative effect of varying illumination 
by about 40% in the case of first held out set, and 60% in the 
novel held out set.  

Color Constancy Pre-Processing 

As discussed in the introduction, the obvious, and often 
assumed solution to the illumination variation problem in 
object recognition is color constancy pre-processing. For 
this work we test this idea with the two simple color 
constancy methods: gray-world (GW) and scale-by-max 
(SBM). Many better methods exist (see, for example 16,30-37), 
but here we are more interested in first establishing whether 
color constancy processing helps at all. For the gray world 
method we computed the appropriate expected value of the 
average (R,G,B) over all 34,000 Corel images. (For this data 
set, gray is (52.9, 51.0, 43.0)). We then removed the color 
cast from the images by assuming that the average (R,G,B) 
for each image was gray, and that the diagonal model was 
valid. For the Corel images, the diagonal model is not likely 
to be particularly good, but for our simulation experiments 
where the modeled illumination change was set to emulate 

the SFU data, the diagonal model is reasonably accurate. 
However, we purposely allowed for some variation from the 
diagonal model by using the 3 by 3 linear transformations on 
chromaticity only to create the data set. 

Table 1. Word prediction performance for the most 
common color spaces in computer vision. The numbers 
are amount by which word prediction exceeds that of 
using the empirical distribution (bigger is better). 

Word prediction performance on the 
various data sets (error is roughly 0.003) 

 
Feature set 

Training Held out Novel 

RGB, L*a*b, and rgS 0.140 0.090 0.055 
RGB 0.112 0.064 0.044 
L*a*b 0.148 0.096 0.059 
rgS 0.149 0.094 0.060 
 

For the scale-by-max method, we simple scale each 
channel so that the maximum in the images is that observed 
in the entire dataset, which, for the Corel data set, is not 
surprisingly 255 for each channel. 

The results  (Table 2, rows 4 and 5) show that the scale-
by-max normalization is very helpful, whereas the gray-
world normalization is not. An examination of the images 
reveals that the color balance of many or most of them is 
consistent with the maximum in each channel being close to 
255. There are obvious exceptions, such as the entire CD of 
sunsets, but each CD makes up less than 1% of our data. By 
contrast, the gray world assumption is not particularly valid 
for this data set, and attempting to deal with illumination 
change by exploiting it did not yield good results. 

Color Normalization 

In our final experiment, we applied the same normalization, 
either GW or SBM, to the training data as well as the test 
data. This scenario is thus similar to the indexing paradigm 
discussed in the introduction. There we argued that indexing 
may not make sense if the reference data set is simple 
objects, because normalization removes too many degrees of 
freedom. 

Notice, however, that in our approach, we are neither 
using the training images as objects to be recognized, nor 
images to be found. Rather we are using them to learn about 
image regions from images which typically have a wide 
range of colors. Thus training in a normalized space might 
make sense if illumination variation is expected and this is 
what is suggested by the results. Using this strategy 
improves upon that possible using color constancy 
processing for the test images only. In the case of SBM, the 
absolute improvement is small because the result obtained 
without normalizing the training set was already good. In the 
case of grey world normalization, the improvement was 
substantial. This makes sense because it in effect alters the 
data so that the gray world assumption is more valid. 
However, the performance is still below that of using scale-
by-max both with and without extending the normalization 
to the test data.  
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Conclusion 

We posit that our system for translating image regions to 
words is more representative of the general object 
recognition problem than the often used indexing task, and 
thus it is a good platform to study the use of color for object 
recognition. Using this platform we have confirmed the 
notion that illumination variation can pose problems for 
object recognition systems, and have looked at several 
classes of approaches for dealing with it.  

In our somewhat artificial dataset, conditions were good 
for the scale by max algorithm, and using it gave results 
approaching that where there was no color constancy 
problem. This is encouraging, because, as argued in the 
introduction, color constancy is required when objects to be 
identified have limited color ranges. In this case, simple 
normalization does not work. When normalization is 
appropriate,  as was the case in our artificial test setting, our 
results gave a small improvement in conjunction with scale 
by max, and a large improvement in conjunction with the 
gray world method. However, the performance with the grey 
world method was still less then the scale by max method, 
without normalization. 
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