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Abstract 

Color images acquired through single chip digital cameras 
using a color filter array (CFA) contain a mixture of 
luminance and opponent chromatic information that share 
their representation in the spatial Fourier spectrum. This 
mixture could result in aliasing if the bandwidths of these 
signals are too wide and their spectra overlap. In such a 
case, reconstructing three-color per pixel images without 
error is impossible. One way to improve the reconstruction 
is to have sensitivity functions that are highly correlated, 
reducing the bandwidth of the opponent chromatic 
components. However, this diminishes the ability to 
reproduce colors accurately as noise is amplified when 
converting an image to the final color encoding. In this 
paper, we are looking for an optimum between accurate 
image reconstruction through demosaicing and accurate 
color rendering. We design a camera simulation, first using 
a hyperspectral model of random color images and a 
demosaicing algorithm based on frequency selection. We 
find that there is an optimum and confirm our results using 
a natural hyperspectral image. 

I. Introduction 

Most digital cameras today use a single CCD or CMOS 
sensor. To capture color information, a color filter array 
(CFA) is placed in front of the sensor. This array, usually 
composed of three filters, limits the sensitivity of each 
photocell to a single part of the visible spectrum. 
Consequently, each pixel of the CFA image only contains 
information about this limited range, i.e. a single color 
response. However, three colors per pixels are needed to 
render images on a particular display device. An algorithm 
called color demosaicing is therefore applied to regenerate 
the missing colors. In a CFA image, spatial and chromatic 
information are mixed together in a single lattice, as only 
one chromatic sensitivity is available at each pixel. This 
mixture could result in aliasing if the lattice information 
capacity is not enough. For this reason, the design of a CFA 
camera will always involve a trade-off between spatial 
resolution and color accuracy. 

It has been shown that spatial juxtapositions of 
chromatic samples (as in a CFA) could be expressed as a 
modulation of luminance and opponent chromatic signals. 
Since the arrangement of color filters in a CFA is regular, 
luminance and opponent chromatic signals have specific 
locations in the spatial Fourier domain. Moreover, 
luminance is defined in such a way that it has maximum 
spatial resolution, whereas opponent chromatic signals are 
sub-sampled.1 These properties have several consequences 
for demosaicing. First, it is possible to design a demosaicing 
algorithm by selecting frequencies corresponding to the 
position of luminance and opponent chromatic signals in the 
spatial Fourier spectrum. The three-color per pixel image is 
reconstructed as the sum of estimated luminance and 
interpolated chrominance.2 As the estimators are based on 
frequency selection, they can be designed as uniform linear 
convolution filters and offer the best compromise between 
accuracy and efficiency.4 Second, since luminance is 
defined with maximum resolution, it is not subject to 
interpolation and thus is able to carry all spatial information. 

However, luminance and opponent chromatic signals 
share the same two-dimensional Fourier space for their own 
representation. Artifacts may result in the demosaiced 
image if their representations overlap (alias). Thus, the 
design challenge with a CFA camera is to arrange the spatial 
bandwidths of luminance and opponent chromatic signals in 
such a way that their spectra do not overlap.4 In particular, 
the bandwidth of opponent chromatic signals could be 
reduced by increasing the correlation between chromatic 
sensitivities of color filters. The underlying idea is that if the 
three filters are identical, the chromatic signals vanish, and 
then the sensor becomes a black-and-white imager. An all-
pass filter estimator can exactly select the luminance 
information. In that case, demosaicing is perfect, but no 
color information is available.  

Actually, the representation of luminance and 
chromatic opponent signal in the CFA image depends on 
the spatial-chromatic correlation between color planes, 
which can be partially controlled through the sensitivity 
functions of the sensor plus filter system. Unfortunately, if 
increasing correlation improves demosaicing, it reduces the 
ability to render colors in the final color encoding because 
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noise is more amplified when the transformation becomes 
stronger.5 

In this paper, we discuss the influence of spectral 
sensitivity functions on the spatial frequency spectrum of a 
CFA image and judge the quality of the reconstruction 
using a demosaicing algorithm by frequency selection.2,4 We 
investigate if there is an optimum between increasing the 
correlation of the filter sensitivities and the accuracy of 
color rendering. We chose to use a random hyperspectral 
image as input (with diagonal covariance) to prevent natural 
spatial and chromatic correlations. Usually, natural images 
have spatial and chromatic correlations that could modify 
the optimal parameters of the sensitivity functions. To 
prevent for a particular optimization based on a particular 
image database, we therefore chose to work with random 
hyperspectral images. 

While the idea is intuitive, designing an optimization 
procedure is challenging because there are many parameters 
to consider: position, size and shape of the three filter 
sensitivities, arrangement of the filters in the CFA, and the 
parameters of the frequency selection algorithm. Moreover, 
the lack of reliable natural color image models can render 
the parameter estimation image dependent. In a first 
attempt, we study principally the feasibility, using artificial 
random images. To transpose this study to real capture 
devices, the parameters of the sensitivity functions and the 
point spread function of the optical system should be 
adapted. 

The paper is organized as follow (see Figure 1 for 
reference). Using artificial random hyperspectral images, 
we show that increasing correlation between sensitivity 
functions increases the demosaicing quality (PSRN demosa) 
but decreases color rendering quality (PSNR color). Then 
we take into consideration the whole image processing 
chain and show that an optimum exists (PSNR total). 
Finally, we confirm this result on a natural hyperspectral 
image. 
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 Figure 1. Synopsis of the simulations used in the paper. See text for 
explanation. 

 

II. B/W versus Color Imager 

Image Model 
Natural environments emit or reflect photons that are 

captured by the photosensitive elements of the camera. 
Even if a photon signal is a continuous function of space 
and wavelengths, we may consider the function of incident 
light ( , , )E x y λ  as a discrete three-dimensional function. 
Light efficiency is not constant over wavelength, and also 
depends on the sensitivity functions of the color filters and 
the sensor. Thus, the signal carried by each photocell in a 
digital camera can be written as: 
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where iϕ  represents the sensitivity of the system sensor plus 
filter of type i . In this paper, we use artificial sensitivity 
functions based on a Gaussian distribution in the 
wavelength domain. They are expressed as follow: 
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iµ  and iσ  are the parameters that determine maximum and 
width, respectively, of the sensitivity function of filter i . iK  
is a normalization factor that sets the quantum efficiency of 
each sensitivity function equal to unity in the spectral 
interval (400 to 700 nm) used in this simulation (see Figure 
2). Thus, if ( ), ,E x y λ  contains 31 matrices of range 0-1, the 
corresponding RGB image computed through the iϕ  
sensitivity functions keep the same range.  
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Figure 2. Representation of simulated sensitivity functions. (a) 
µ=550, σ=50: the width of 2σ

i
  is located at approximately 37% 

of the curve height. (b) The normalization factor guarantees a 
unitary integral of each sensitivity function, even if the curve is cut 
due to range limitation. µ

i
=(475, 550, 625), σ

i
=100.  

 
For a more realistic simulation, we also take into 

account the optics of the camera. The function ( , , )E x y λ  
that describes incident light on the sensor corresponds to an 
illumination function convolved with a low pass filter, 
which represents the effect of the optical system’s point-
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spread function (PSF). We model the PSF by a Gaussian 
function. To simplify the computation, we apply a 
convolution in spatial Fourier domain. If F

)
 and E

)
 

represent the Fourier transform of scene radiation and 
radiation after passing through the optics, respectively, we 
have:  

2 2

2ˆ ˆ( , , ) ( , , )
x yf f

s
x y x yE f f F f f eλ λ

+
−

=    (3) 

where ( , , )F x y λ  is a tri-dimensional random matrix. 
Increasing parameter s  reduces the blurring effect 
symmetrically for x  and y  spatial dimensions, and vice 
versa.  

With this model, generating an RGB image requires 
five parameters: three for the maximum of wavelength 
sensitivity for the three filters, one for the variance (we 
choose the three variances to be equal) and one for the 
optical blur. 

Correlation is Optimal for Demosaicing 
In a CFA image, each pixel contains only one color 

response as opposed to three color responses in regular 
RGB color images. It is possible to express the whole signal 
of a CFA image in terms of iC  by taking into account the 
spatial arrangement of the color sensitivities on the sensor. 
As already shown in Ref.  [1], the whole CFA signal is 
expressed as: 

( , ) ( , ) ( , )CFA i i
i

I x y C x y m x y= ∑    (4) 

where ( , )im x y  are sub-sampling functions taking values 1 
or 0, depending on the presence or absence of sensitivity i  
at position ( ),x y . 

The spatial Fourier transform of a CFA image 
following the x  and y  variables is given by: 

ˆˆ ˆ( , ) ( , ) ( , )CFA x y i x y i x y
i

I f f C f f m f f= ∗∑    (5) 

where ⋅̂  represent the spatial Fourier transform and ∗  the 
convolution operator. xf  and yf  are the spatial frequencies 
corresponding to x and y. Since ( , )im x y  functions are 
periodic, the global Fourier transform of a CFA image is 
composed of distinct energy regions. 

In Figure 3(d), we can distinguish nine regions where 
energy is concentrated. The one in the center corresponds to 
luminance, and the eight in the corners and centers of each 
side correspond to opponent chromatic signals. In this case, 
the optical blur is designed to guarantee that the nine 
regions are well separable. In Figure 3(e), the optical blur is 
less strong, resulting in an overlap between the different 
regions that can generate artifacts in demosaicing.  

As already proven elsewhere,2 the spatial arrangement 
of filters proposed by Bayer3 is the best spatial arrangement 
of three colors on a square grid. From the point of view of 
demosaicing, however, it is better to have a CFA with twice 
more blue than red and green pixels.4 The resulting 
arrangements of the opponent chromatic spatial frequencies 

will reduce aliasing in the reconstruction. This is illustrated 
in the Figures 3(e) and 3(f), as well as Figures 4(b) and 4(c).  

   

   

Figure 3. Random images (128x128), sampled with sensitivity 
functions with µ

i
=(475, 550, 625) and their spatial Fourier 

spectrums (a) RGB image with s=30, σ
i
=50; (b) RGB image with 

s=50, σ
i
=100; (c) same image as (b); (d) Fourier spectrum of (a) 

after sub-sampling according to the Bayer CFA; (e) idem of (b); 
(f) idem of (c) but with a CFA following the Bayer spatial 
arrangement but having twice more blue than red and green 
pixels.  
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Figure 4. Spatial Fourier representation of a CFA image. (a) 
Original image; (b) spatial Fourier spectrum of its Bayer CFA 
image; (c) same of a Bayer CFA with twice more blue than red 
and green pixels.  

 

ˆ ˆ ˆ1 2R G BLum C C C= + + , ˆ ˆ ˆ1 2R G BOp C C C= − + , ˆ ˆ2 R BOp C C= − , 
ˆ ˆ ˆ2 2R G BLum C C C= + + , ˆ ˆ ˆ3 2R G BOp C C C= + − , ˆ ˆ4 R GOp C C= −       (6) 

 
In Figure 4, we additionally indicate the content of the 

opponent chromatic channels (Equation 6). From the same 
image (Figure 4(a)) we compute its spatial Fourier 
transform after sub-sampling according to the Bayer CFA 
(Figure 4(b)) and a “Blue-Bayer” CFA with twice more blue 
than red and green pixels (Figure 4(c)). In both spatial 
Fourier representations of Figures 4(a) and 4(b), luminance 
occupies the same area, even if it is not defined by exactly 
the same amount of R, G and B. However, chrominance 
signals have different bandwidths. As can be seen in Figure 
4(b), the center of the sides is composed of the Fourier 
spectrum of R minus B. It has a larger bandwidth than the 
center of the sides of Figure 4(c), which is composed of the 
Fourier spectrum of R minus G. Considering that the 
overlap between the luminance and opponent chromatic 
spectra is responsible for aliasing artifacts during 
reconstruction, it is better to have the larger chromatic 
spectrum located further from the luminance spectrum. That 
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can be achieved by changing the color arrangements on the 
Bayer CFA, i.e. by allowing for two times more blue than 
red and green pixels. Note that for the simulations in this 
paper, we used such a CFA. 

 
Optimal Convolution Filters for Demosaicing 

In a CFA image, luminance can be estimated by a 
convolution filter.1-2,4 We can design this filter by Gaussian 
functions that suppress the opponent chromatic channels 
and conserve as much as possible the luminance spectrum. 
For example, we decided to parameterize the filter as 
follow: 

2 2 2 2
1 2 3 4

2 2
1 2

1 2 3 4

( ) ( ) ( ) ( )

ˆ 1
x y x yf c f c f c f c

r r
lum

c c c c

F e e

− + − − + −
− −

= − −∑∑ ∑∑  (7) 

1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 42 2 2 2 2 2 2 2 2 2 2 2, , , , , , , , ,0,0, , 0, , ,0c c c c∈ − − ∈ − − ∈ − ∈ −                

 
where c1 and c2 represent the centers of the opponent 
chromatic channels in the corner, and c3 and c4 the centers of 
each side of the Fourier spectrum. r1 and r2 are free 
parameters corresponding to the variance of Gaussian 
functions in the corner or center of the sides of the Fourier 
spectrum, as illustrated in Figure 5. 
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Figure 5. Representation of a luminance estimation filter in the 
spatial frequency domain. Parameters r1 and r2 influence the 
amount of the chrominance retained in the corners and centers of 
sides, respectively. 

 
Once this filter has estimated luminance, the 

chrominance is retrieved with its orthogonal filter. This can 
be achieved by subtracting the estimated luminance from 
the CFA image. We then interpolate the opponent chromatic 
channels, and reconstruct the three-color by pixel image as 
the sum of estimated luminance and interpolated opponent 
colors. See Ref. [2] for details on the algorithm.  

For a particular CFA image, we optimize parameters to 
result in maximum color peak signal-to-noise ratio 
(CPSNR) between the reconstructed image through the 
luminance estimated by the filter and the original RGB 
image.  

 
Simulation 

We created a random hyperspectral image ( , , )F x y λ , on 
which we applied a blur (eq. 2) to obtain ( , , )E x y λ . We then 
construct three filter sensitivity functions iϕ  and sample 

(eq. 1) the hyperspectral image to obtain a RGB image. To 
create a CFA image, we “mosaic” the RGB image by 
selecting the pixel values corresponding to a “Blue-Bayer” 
CFA. We then apply the frequency selection demosaicing 
algorithm, always computing the optimal parameters for the 
luminance filter. We then compute the CPSNR (called 
“PSNR demosa” on Figure 1) between the color image and 
the reconstructed image.  

The first simulation we performed shows the influence 
of the position of the maximum sensitivity, iµ , on the 
demosaicing algorithm’s performance. We fixed Rµ  and Bµ  
to 475 and 625nm, respectively, and vary Gµ  from 400 to 
700nm. Figure 6 illustrates clearly that the position of the 
sensitivity functions change the quality of the demosaicing 
algorithm in terms of CPSNR. If the sensitivity functions 
are broadband, there is only one global maximum (Figure 
6(a)). If the sensitivity functions are more narrow band, 
there are two local maxima (Figure 6(b)). 

The reason why the maximum CPSNR occurs when 
Gµ  is close to Rµ  can be explained by analyzing the Fourier 

representation. The area of the spectrum most subject to 
aliasing is given by the center of the sides, thus the 
spectrum of R-G (see Figure 4(c)). Thus, when R is equal to 
G, this part is removed. However, if R is equal to G, the 
bandwidth of the second opponent signal will increase. The 
optimal is therefore a G close to R, but not equal. Note that 
the L, M, and S cone sensitivity functions of the human 
visual system have similar properties; they are broadband 
and the maximum sensitivity of M is close to L. 

The second parameter we tested is the bandwidth in 
wavelength domain of the sensitivity function, given by iσ . 
We constrain iσ  to be equal for each of the three color 
sensitivity functions. Figure 7(a) shows an example of 
CPSNR value against iσ . 
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Figure 6. CPSNR between original and reconstructed image, 
varying parameter µ

G
  with µ

R
=625, µ

B
=475,  s=50, (a) σ

i
=100; 

(b) σ
i
=50. 
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Figure 7. Influence of σ
i
 on the demosaicing performance. (a) 

“PSNR demosa” for µ
i
=(475, 550, 625); (b) Evolution of radius 

r1(continuous line)  and r2 (dotted line). 
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As previously mentioned, larger iσ  increase the 
overlap between the different filter sensitivity functions, 
which in the extreme will result in a black and white 
imager.  The demosaicing CPSNR consequently also 
increases with increasing iσ . Moreover, as shown in Figure 
7(b), the parameters of the luminance filter move to an all 
pass filter. 

Correlation is Worst for Color Rendering 
We have shown in the previous section that increasing 

the correlation between the sensitivity functions results in 
better demosaicing CPSNR. This result is antagonistic with 
the ability to render color. As shown, for example by Baer 
and Holm,5 the linear transformation from sensor encoding 
to final display color encoding has a large influence on 
noise. In this paper, we use sRGB6 as the final display color 
encoding. We compare the rendering of a hyperspectral 
image into sRGB with an image sampled by our iϕ  
sensitivity functions and then converted into sRGB. As the 
sRGB color matching functions (CMF) are based on XYZ, 
we consider the XYZ CMFs as the hypothetical sensor 
responses for the first case. The resulting image is called 
sRGB1 in Figure 1. For the simulation of the second image 
(sRGB2), we sample the hyperspectral image with the iϕ  
functions and then compute the best linear transformation 
between iϕ  and XYZ using mean square error. We then 
render the image into sRGB. The comparison of sRGB1 and 
sRGB2 corresponds to “PSNR color” in Figure 1. 

It should be noted that in our simulation, the effect of 
noise is not visible if we compute in double precision. 
Additionally, the image model we have proposed does not 
contain any noise. To take into consideration the noise 
amplification at the color conversion step, we therefore 
quantize the images into either 8 or 16 bits per channel 
before converting into sRGB. This is analog to the A/D 
conversion in digital cameras. 

 
Simulation 

As the sRGB color matching functions are the basis of 
our reference color encoding, the closer the iϕ  resemble 
these function, the better the PSNR color will be. To 
confirm this hypothesis, we choose 600Rµ =  and 450Bµ = , 
thus equal to the maximum of the sRGB color matching 
functions, and let Gµ  evolve from 400 to 700 nm. Note that 
while we indicate the blur parameter s  we have used in the 
simulation, it has no influence on the result because we 
compare here three-color by pixel images. 

The best PSNR is obtained with 520Gµ = (see Figure 8 
(a)), which is close to the maximum of 540 nm of the sG 
CMF. The difference between them could arise from the 
quantization of the wavelength variables, or because of the 
different shapes of the iϕ  functions compared to the shape 
of sRGB functions. For another example, we chose 

625Rµ =  and 475Bµ = . These values ensure uniform 
coverage of the visible spectrum but result in a bad PSNR. 
In that case, 560Gµ =  is the optimum value (Figure 8(b)). 
Here we can also see a difference between the value of 550 
nm that would cover the whole spectrum and the optimal 

value. It should be noted that for the iσ  values we have 
used here, the noise due to quantization has no influence, 
even for 8 bits per channel. 
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Figure 8. PSNR color between an image rendered directly into 
sRGB and an image rendered with ϕ

i 
and then converted to sRGB. 

(a) µ
R
=600, µ

B
=450, s=50, σ

i
=50; (b) same for µ

R
=625, µ

B
=475. 
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Figure 9. (a) PSNR color as a function of σ
i
, 16 bits/channel 

quantization; (b) same for 8 bits/channel quantization. 

 
 
For the rest of this paper, we will use the optimal 

maxima ( )450,520,600iµ = . We can now investigate the 
influence of iσ  on the color reproduction. 

As shown in Figure 9(a), the optimal PSNR is around 
iσ  = 50, independent of the quantization. The influence of 

quantization noise is visible at iσ  larger than 150. In our 
example, increasing the bandwidth does not decrease the 
color quality for 16 bits/channel. As expected, however, the 
quality of the color rendering will decrease with increasing 

iσ  when the images are quantized to 8 bits/channel (Figure 
9(b)).  

III Tracking Optimal Parameters 

We have seen that increasing the correlation between the 
sensitivity functions improves the demosaicing quality but 
reduces the color reproduction quality. To find a global 
optimum for the sensitivity functions, we designed the 
following simulation.  

We generate a hyperspectral random image with a 
given optical blur factor. We choose the iµ  values as 
defined in the previous section, and let iσ  evolve. To 
measure the quality of the reconstruction, we compute the 
“PSNR total” between sRGB1 and sRGB3, as defined in 
Figure 1. sRGB1 is the image rendered directly into sRGB 
using XYZ color matching functions as sensors. sRGB3 is 
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an image that was sampled with the sensitivity functions iϕ , 
quantized, mosaiced and then demosaiced, and then 
rendered into sRGB. We also plot “PSNR color” and 
“PSNR demosa” as defined in the previous section. We also 
compute the PSNR between sRGB2 and sRGB3 (PSNR 
demosa2) to take into account the demosaicing effect after 
rendering into sRGB. 

The result is illustrated in the Figure 10. We see clearly 
in Figure 10(a) that there is an optimum around 50iσ =  for 
the PSNR total. For all iσ , PSNR total is lower than PSNR 
color and PSNR demosa2. However, there are several things 
to highlight. First, in contrary to PSNR demosa that 
increases continuously with iσ , PSNR demosa2 that takes 
into account the rendering to sRGB shows an increase 
followed by a decrease around 80iσ = . This is because the 
noise imposed by the demosaicing process is amplified by 
the color encoding conversion. This noise has an effect at a 

iσ  width smaller than the iσ  width found for color 
correction only, as can be seen by comparing with Figure 
9(b), where the PSNR color starts to decrease around 

iσ =150. 
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Figure 10. (a) PSNR function of σ
i
 with s=50, µ

i
=(450, 520, 600), 

16 bits (b) same with 8 bits (c) same with s=30, (d) same with 
s=80. 

 
Figure 10(c) and 10(d) are the PSNR results for optical 

blur values s  of 30 and 80, repectively. These figures show 
that demosaicing results vary for these values, starting with 
a higher value when s decreases. But PSNR color and 
consequently PSNR total are not modified, as long as the 
PSNR demosa is not too small (Figure 9(d)). 

In Figure 11, we show an example of an image 
rendered directly (sRGB1) and an image rendered through 
the whole chain (sRGB3), as well as the optimal sensitivity 
functions with 44σ = .  

In order to confirm our result on natural images, we 
have tested our framework on a particular hyperspectral 
image.7 A white balancing correction is performed by 
normalizing the white square of the MacBeth color checker 
in the image, as our simulation does not take illuminant 

variations into account. The image is also cropped, and the 
simulation is executed on a 128x128 window. 
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Figure 11. (a) sRGB1 (b) optimal sensitivities function (c) sRGB3 
using optimal parameters 
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Figure 12. Simulation on a real hyperspectral image. (a) for 16 
bits and (b) for 8 bits. 

 
 
As shown in figure 12, we found the same kind of 

behavior for the four different PSNR, meaning that our 
image model is close to real images. Nevertheless, the 
optimal iσ  value is a bit smaller. Note also that the PSNR 
values are higher than for a random image. That is 
particularly true for “PSNR demosa” which shows an initial 
value of around 40dB. This value was closer to 25dB in 
random images. This is certainly due to the natural 
correlation in space and wavelength inherent to natural 
images. 

IV Conclusion 

The goal of this paper is to find the optimal sensitivity 
functions for CFA filters by examining the trade-off of 
increasing their correlation to improve demosaicing 
algorithm performance and decreasing them to improve 
their color rendering abilities. As shown in our simulation 
on random hyperspectral images, we can find an optimum 
for every case. 

However, the methods presented in this paper are a 
simulation, limited to sRGB as end color encoding. They 
also do not take into account white-balancing and other 
color corrections. Additionally, using a more appropriate 
quality metric than PSNR could be discussed. Finally, we 
limit our simulation to equal quantum efficiency for all 
sensors and do not consider different illuminant spectral 
power distributions. For real applications, the shape of the 
sensitivity functions, optical blur, display color space, 
capture noise, etc. should be take into consideration. 

Finally, this paper confirms that demosaicing by 
frequency selection, or equivalently using linear 
convolution filters, is a fast and accurate way to reconstruct 
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three-color per pixel images. We have also shown that color 
conversion and quantization has a larger influence on 
quality compared to the demosaicing algorithm. Also, we 
confirm that good camera design is a compromise between 
spatial blurring by the optics, the shape of the sensitivity 
functions, the ability to reconstruct good spatial acuity, and 
color accuracy. 
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