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Abstract
This paper aims to contribute to the colour management
methods employed in the digital post–production of cin-
ema images. It consists of building an accurate character-
ization model of the process of printing from a negative
film to a positive. Several different generic methods were
tested and their results analysed in order to assess their per-
formance and gain more knowledge about their intrinsic
nature, as well as that of the process itself. The neural
network model outperformed the others. Its flexibility en-
abled it to achieve errors well below the variability of this
process. It is the only one that can reach the very high qual-
ity required by the digital cinema industry. Colour copies
of the figures and the VRML files may be found at the
author’s web page at alexisgatt.free.fr / publications / neg-
ative.htm.

Introduction

The spread of digital imaging technology over recent years
has extended the limits presented to the artistic process of
creation. However, from a colour science point of view, the
movie industry also poses many new challenges. Indeed,
transferring the process of film creation from analog to dig-
ital technology is a complicated task given the very high
quality required, and already achievable by conventional
means. The Computer Film Company (London, UK) and
the Colour and Imaging Institute (Derby, UK) are there-
fore working jointly to establish a coherent colour control
system for the digital post–production of film. A good in-
troduction to the issues involved is provided by Lempp et
al1.

As a matter of fact, the proportion of digital technol-
ogy used in cinema as a whole is still rather small com-
pared to total movie output, but is likely to increase in
coming years. One advantage of digital capture is that
digital effects or editorial and artistic changes can be ap-
plied directly to the movie. On the other hand, the neg-
ative of a film captured using conventional methods first
needs to be digitized before the post-production process
can be initiated. However, the medium that will ultimately
be distributed to local cinemas is a positive film. There-
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Figure 1: Traditional film process chain, including digital post-
production.

fore, regardless of whether the film was captured with dig-
ital or analog method, a negative master has to be printed,
from which positive copies can be obtained and distributed
widely. This process involves three colour imaging media,
as can be seen from Figure 1: negative film which is what
scenes are captured onto using photographic means, posi-
tive film which is made from the negative so as to have a
rendering of the original scene that represents its colours
and the projection of the positive film which results in the
final rendering of the director’s representation of a scene.
Finally, the colour characteristics of each of these media
can be described using different characteristics: negative
and positive films can be described using different types
of densities2 (these are measurable properties that relate
to the concentration of colorant in film) and the projection
can be described in terms of the extent to which it stimu-
lates the eye (e.g. CIEXYZ3) or in terms of its appearance
in terms of lightness, chroma and hue (e.g. as predicted
using a colour appearance model such as CIECAM97s3).

In this context, the present study intends to establish
an efficient control of the reproduction of colour in a hy-
brid imaging chain. The process starts with a silver halide
colour negative film, involves digital processing among the
intermediary steps, continues with the printing of another
silver halide output medium, and ends with the projection
of this medium onto a cinema screen . The parallel be-
tween digital post-production in cinematography and dig-
ital photofinishing of still photographs thus becomes evi-
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R channel G channel B channel
mean max mean max mean max

Distance–weighted
0.06 0.21 0.06 0.21 0.08 0.26

interpolation
Gaussian

0.07 0.26 0.04 0.26 0.04 0.18
interpolation

Neural
0.02 0.05 0.02 0.07 0.02 0.13

networks
Nonlinear

0.11 0.34 0.15 0.53 0.17 0.55
model

Standard deviation
0.18 0.27 0.19

of process

Table 1: Comparison of performance obtained by all the tested models. The results are expressed in terms of residuals of Status A
densities.

dent, as both fields start from a negative film to produce a
positive as output medium. Whereas the latter has reached
maturity as proven by the abundant literature available4,5,6,
little research has been devoted to the former, and knowl-
edge in this field is mainly contained by small specialist
companies.

The goal of this project thus consists of establishing a
coherent colour management system for the development
of a fully digital film process chain. Previous research per-
formed as part of this project1 has focussed on other ar-
eas of the considered imaging chain, and the present study
aims to relate the properties of negative film to those of
positive film at the printing process. Being able to do so
will allow for the prediction of positive film characteris-
tics given a piece of negative film, as well as the defi-
nition of the specifications required by negative films to
achieve specific properties for positive film. This second
function is particularly important for digital cinema post-
production where the desired appearance of the projected
film is known and a negative film needs to be produced to
achieve it.

This study intends to achieve the above by means of
developing mathematical models that can transform nega-
tive film densities to positive film densities and vice versa.
Having such models is a key element of controlling the en-
tire post–production process as they form an essential link
between the negative and positive film media that are key
to current distribution and presentation of motion pictures,
irrespective of whether they were originated digitally or by
analog means. Once the relationship between positive and
negative film densities can be modeled accurately, all that
will be needed is a model of the relationship between pos-
itive film densities and the appearance of its projection.

Characterisation models

Specifically, the aim is to develop a number of transforms
between standardised spectral sensitivities related to print-
ing densities for each of these types of film – Status A
for positive and Status M for negative. Using real print-
ing densities would have been more appropriate, since they
are the densities that would be measured by a device hav-
ing effective spectral responsivities equivalent to those of a
particular print medium and a specific printer. Such infor-
mation was unfortunately not available from the manufac-
turer of the medium, and thus standardised densities had to
be used instead. The likely outcome is to significantly in-
crease the complexity of the problem of modeling the sys-
tem, since the densities used will not be representative of
the exposure received by the individual layers of the print
material, as will be discussed later. A large dataset of Sta-
tus M inputs with their corresponding Status A outputs was
collected to train and test the tested characterisation mod-
els. The problem therefore consisted of fitting a model to a
curve highly correlated with the characteristic curve D-Log
E of the process.

It was first attempted to characterise the process using
an analytical approach. Indeed, the design of the math-
ematical model could benefit from knowledge of the in-
ner architecture of the process. However, the necessary
data being not available, the relative efficiency of several
generic techniques was established by comparing them to
each other, and also with classical methods which have
been implemented previously. Several standard interpo-
lation techniques have been tested, as well as non-linear
programming method. Being part of mathematical pro-
gramming algorithms, such methods can only form deci-
sion surfaces that are relatively simple, since they rely on
the properties of continuous functions. On the other hand,
heuristic search procedures, such as neural networks, are
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very good at exploring global and local optima. For in-
stance, the neural network used in this article, a multi–layer
feedforward perceptron7, can implement decision surfaces
of arbitrary complexity. An effective method to train this
type of network is given by the generalized delta rule for
learning by back–propagation8. The learning phase not
only consists of finding the most appropriate architecture,
i.e. the number of neurons in the hidden layer, but also the
optimal learning rate and momentum. As learning rate is
used to determine the speed at which the network learns,
it may be thought that a high learning rate may speed up
the process, and thus be more efficient. However this can
cause problems. Indeed, as the adjustments made when the
learning rate is high are also relatively high, weights may
jump from one value close to the optimal one to another
which is equally close, but in the other gradient direction.
The network may thus end up oscillating around the opti-
mal solution, but without actually reaching it. On the other
hand, with a low learning rate, the network may be brought
to a standstill in a local minimum and the global will again
never be reached. Some techniques, such as simulated an-
nealing, aim to solve these problems. The optimal configu-
ration obtained from the learning phase contained a single
hidden layer containing about 20 neurons, and the learning
rate and momemtum were as low as 0.1.

Analysis of results

The efficiency of the model based on the neural network
can be inferred unambiguously from Table 1. It clearly
outperformed all the other models implemented. Indeed,
the maxima of residuals in each channel are similar to
the means obtained using the best interpolation method.
Furthermore, the mean of the residuals is well below the
standard deviation of the process itself. However, a more
thorough analysis of the residuals is necessary for esti-
mating the goodness of fit. Indeed, descriptive analysis
methods focus on some key characteristics of a population
and thereby compresses the available information into a
few descriptive values. While they provide summaries of
a population, they act as a narrow filter which may omit
some meaningful characteristics, resulting in an incom-
plete analysis.

An alternative approach consists of displaying all the
available data at the same time to find a more suitable point
of view, i.e. one that gives a more meaningful visualisation
of the data. The residuals’ distribution was therefore rep-
resentated in 3D using the VRML language9. For each
observation in the testing set, a sphere was displayed at its
exact density coordinates, and its colour was set according
to the residual value at the considered point. However, al-
though this 4D representation does not alter nor compress
the characteristics of the residuals’ population, it does not
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Figure 2: 4D representation of projection plane given by the PCA
for the Gaussian interpolation. The shades of grey represent the
magnitude of the residuals at that point.

help either the analyst to find a meaningful point of view.
Principal component analysis methods (PCA) might then
be helpful. Indeed, they aim at constructing a subspace for
the data that best preserves their dispersion and that allows
for best discrimination among the data in a linear subspace
of the original space. The first two axis of the obtained
subspace will thus give valuable information about the dis-
tribution of the residuals in density space. Since the resid-
uals’ dispersion is much smaller than those of the Status
M, more weight should thus be given to them by linearly
transforming them before performing the PCA. The opti-
mal discrimination plane was obtained by increasing the
residuals’ dispersion to twice that of the coordinates. De-
ducing the location of the residuals, and then the impact
that has on the tested model, will be made much easier
thanks to the PCA.

For instance, the insufficiency of the functional part of
the model based on the Gaussian interpolation can be in-
ferred unambiguously from the PCA. The projection plane
obtained for this model is shown in Figure 2, while Fig-
ure 3 indicates more precisely the location of this plane in
density space. 74% of the total variation in the data set is
accounted for by the two main axes of the PCA plane. The
main vector corresponds to the first bisecting line of the
density space. This conclusion is confirmed by a scatter
plot of a Status M channel versus its corresponding Status
A values, since a systematic pattern following the densi-
ties’ magnitude is clearly present. However, the second
axis was invisible from standard analysis methods. The
residuals tend to be bigger when the point considered is
located near the high green and blue densities, whereas it
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Figure 3: Representation of the PCA plane under five consecutive angles ( rotation of the density space around the blue axis ).
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Figure 4: 4D representation of full data set viewed from the first
bisecting line of the density space

is the opposite when the coordinates of a point are close to
high red densities. Figure 4, which shows a full 4D repre-
sentation of the data, illustrates this point. Indeed, it can
be noted that the green axis divides the data cloud into two
distinct parts, with blacker spheres (i.e., smaller residuals)
near the red axis, and whiter spheres in the other part of
the space. Since residuals are not randomly distributed,
this functional part of this model is not sufficiently accu-
rate. On the other hand, no specific structure appeared
from the PCA analysis for the model based on the neural
network, confirming the excellence of the results achieved
by this model. It is thus safe to conclude that it constitutes
a very good approximation of the considered process. In
this case, the PCA was demonstrably helpful as an effi-
cient way to accurately identify the trend in the residuals
distribution.

Discussion

Table 1 shows the intrinsic standard deviation of the neg-
ative film printing process, which was obtained from the
measured data used in this study. They express typical
variations of the negative film printing process and there-
fore put the magnitudes of model prediction residuals into
context. Given the quality of the results achieved by the
neural network, it might be concluded that the process is
highly nonlinear, since neural networks are considered to
be highly nonlinear techniques. However, if that were so,
better performance would also be expected from the non-
linear model.

It was previously mentioned that the choice of densities
was not optimal for modelling this specific process. It is
likely that the real spectral sensitivities of the print material
are not the same as the Status M or A spectral sensitivities.
Therefore, the amount of exposure received by the individ-
ual layers of the print material will not be directly equal to
the corresponding Status M or A densities. It will more
probably depend on a mixture of them. These interactions,
known as cross-talk effects (overlapping spectral charac-
teristics and chemical inter-image effects), constitute the
main reason explaining the diverse results of every model.
Indeed, the models based on the interpolation techniques
and the nonlinear programming method did not take into
account all the input channels when estimating outputs, but
only one. On the other hand, the large number of degrees
of freedom incorporated in the neural network model gave
it the flexibility required to take such phenomenon into ac-
count. Indeed, whether cross–talk occurs can be demon-
strated by proof by contradiction using the neural network
model. This model provides an excellent estimation of the
process’ behaviour and each Status A output is estimated
from all the three Status M inputs. Any cross–talk occur-
ing in the print process will thus be reflected by the net-
work. Say the hypothesis that cross–talk does not occur
is made. Therefore, the results for a given channel should
not be affected by the values in the other channels. A for-
ward pass was performed in the network after setting to nil
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Figure 5: Results of network tested under normal conditions (left)
and with nil values (right). On the left figure, the predictions
overlap perfectly the observed outputs.

the values of two defined channels, and the predictions for
the third were observed. Figure 5 shows the predictions
of the network for the red channel relative to the values of
the corresponding input channel. The results under normal
conditions are shown on the left and those with nil values
on the right. Similar results were obtained for the other
channels.

In order to achieve the results previously presented, the
network takes into account the values of all input chan-
nels, which proves that the hypothesis previously stated is
wrong. Therefore, it is confirmed that cross–talk occurs
during the print process, which explains the poor perfor-
mance obtained by the other models. In order to provide
an approximation of a channel’s outputs, most of the in-
formation required by a model is contained in the corre-
sponding channel’s inputs. But for the estimation to be ac-
curate, information from all the input channels are a sine
qua non condition. The neural network model thus of-
fers a more flexible solution that the other models. The
good results it achieved show that it can adjust its param-
eters more freely and more efficiently to a wider range of
conditions. It might be possible to include cross-talk phe-
nomenon into the other models by incorporating matrices
to account for the fact that Status A and M are a mixture of
the real printing densities of the medium. Nevertheless, all
the tested techniques are affected by the weakness inherent
in generic models as their validity is restricted to the set of
observations used to derive them. This is a concern espe-
cially from the point of view of the data set’s colour gamut
in that the predictions of generic model’s for colours out-
side the training set are unfounded.

Conclusion

This paper aimed to contribute to the colour management
methods employed in the digital post–production of cin-
ema images. Specifically, it consisted of developing an
accurate characterization model of the process of print-
ing a negative film to a positive. Several different generic
methods were tested and their results analysed in order to

assess their performance and gain more knowledge about
their intrinsic nature, as well as that of the process itself.
A detailed understanding of the process’ characteristics
emerged from this analysis. It is clear that the model based
on the neural network outperformed the others. The results
obtained with it were excellent since it did not suffer from
any of the problems previously mentioned. Its flexibility
enabled it to achieve errors well below the variability of
this process. It is the only one that can reach the very high
quality required by the digital cinema industry.
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