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Abstract 

A multi–resolution, full–colour spatial gamut mapping 
algorithm (GMA) is proposed in this paper. Its aim is to 
maintain as much of an original image’s overall, and in 
particular spatial, information as possible within the limits 
of a reproduction medium’s gamut. First, the original image 
is decomposed into different spatial frequency bands. 
Second, lightness compression and initial gamut mapping 
are applied to the lowest frequency band image. Third, the 
next higher frequency band is added to the gamut mapped 
image and the result is processed by subsequent gamut 
mapping transformations. The third step is repeated until the 
highest frequency band is reached. The effect of this 
algorithm is that intra–image differences in the original 
image are well maintained in the gamut mapped 
reproduction. A psychophysical experiment is then 
described whose results show that this algorithm is in the 
pair of most accurate GMAs and can outperform all other 
algorithms tested here for images which are less accurately 
reproduced by all GMAs. 

Introduction 

Colour images have a wide variety of characteristics, 
ranging from the properties of their colours’ distributions to 
what contents they represent. When attempting an accurate 
reproduction of colour images across media that have 
different colour gamuts it is therefore important to pay 
attention to the reproduction of all characteristics that an 
original image has. For example, original image features 
like having individual pixels of certain colours, having 
predominantly dark colours, having detail in certain parts of 
the image, or looking natural all ought to apply to the 
reproduction as well. Such attention to all image 
characteristics is particularly important when the 
reproduction medium has a colour gamut that is at least in 
some parts of colour space smaller than the original gamut. 

Given the above challenge posed by accurate colour 
reproduction, it is worth looking at the properties of existing 
cross-media reproduction solutions to see whether they 
adequately address it. As most parts of cross-media 
reproduction workflows are descriptive (e.g. device 
characterization, colour appearance modelling), the work of 

preserving image characteristics beyond individual pixel 
colours falls to the gamut mapping algorithm (GMA). 
Looking at existing solutions to gamut mapping,1 it can, 
however, be seen that the majority of them perform 
transformations that are determined only by factors derived 
from the original and reproduction media and a given 
original pixel’s colour. As such these algorithms focus on 
colours of individual original image pixels and transform 
them without explicitly taking into account any other image 
characteristic, or at most taking into account the original 
image’s colour gamut. A consequence of this is that when 
such algorithms are also intended for the reproduction of 
other image characteristics, and this is almost universally 
the intention of their authors, then their reproduction needs 
to be dealt with indirectly.  

An important improvement as compared with such 
pixel–colour–only approaches is the GMA proposed by 
Braun and Fairchild,2 which analyses an original image’s 
lightness histogram and adjusts its behaviour accordingly. 
While such a method deals well with the distribution of 
original lightnesses, there is still significant room for 
improvement by addressing further important image 
characteristics. 

The most obvious candidate for a next step is to 
improve the reproduction of an original’s spatial properties. 
Over the years a handful of gamut mapping algorithms has 
already been proposed with the aim of explicitly dealing 
with this important characteristic.  

In 1989 Meyer and Barth published the first spatial 
gamut mapping paper,3 where the first step was lightness 
compression using low pass filtering in the Fourier spatial 
frequency domain. The dynamic range of the low pass 
filtered image was then compressed to that of the 
reproduction medium and the high pass filtered image detail 
information was added to it.  

Later Nakauchi et al.4 defined gamut mapping as an 
optimisation problem of finding such an image which is 
perceptually closest to a given original and has all pixels 
inside the reproduction gamut. As they defined perceptual 
difference by applying band–pass filters to Fourier–
transformed CIELAB images and then weighting them 
according to human contrast sensitivity, they too performed 
spatial gamut mapping. McCann also proposed a solution to 
dealing with spatial detail in gamut mapping5,6 and focuses 
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on radiance ratios within images on the basis of the Retinex 
theory.7  

Finally, Bala et al. describe a method,8,9 which has 
similarities with the work of Meyer and Barth. Here the 
original image is first processed by a chroma–preserving 
gamut–clipping algorithm. Then, edges are extracted from 
the difference between the original and gamut–mapped 
luminance (or lightness) channels. A high-pass filtering 
method that takes the difference between a given pixel’s 
value and the mean value of its neighbouring pixels is used. 
A window size of 3x3 pixels is proposed for business 
graphics and of 15x15 pixels for pictorials. This edge 
information is subsequently added to the gamut–mapped 
image and processed again using a luminance (or lightness) 
preserving gamut clipping method. 
Against the background of the above proposals for spatial 
gamut mapping, we propose an alternative spatial gamut 
mapping algorithm operating in a multi–resolution and full–
colour way. The aim of the algorithm is both to maintain 
colour appearance in the reproduction and to preserve 
spatial variance and its details will be discussed next.  

Proposed Algorithm Framework 

= +

 
 O T1 T2 

Figure 1. Two–resolution decomposition (r=3) (in T
2
 mid–grey 

represents zero). 

 
As has been noted previously it is more important in 

colour image reproduction to preserve the relationship of 
colours within images than to maintain their absolute 
values,6-7 which is, in fact, impossible for some pixels. These 
relationships will here be expressed by the difference of a 
given pixel’s colour from the mean of its neighbouring 
pixels in an r×r pixel region. This idea leads to the 
possibility of representing an original image (O) as a sum of 
two transformed images whereby the first transformed 
image (T1) image contains at each pixel the mean value of 
the corresponding neighbourhood from O and the second 
transformed image (T2) equals O – T1 at each pixel (Fig. 1). 
Such a pair of transformed images then has spatially higher 
frequencies in T2 and lower ones in T1 and this allows for a 
different treatment of high versus low spatial frequency 
components. 

Such a decomposition of an image can furthermore be 
repeated, whereby T1 is taken as the original image and 
again represented by two transformed images (U1 – lower 
frequency and U2 – higher frequency image). As 
T1=U1+U2, O=U1+U2+T2 and the result is a three–
resolution decomposition of the image (Fig. 2). 

Analogously greater numbers of bands can be used and this 
number can be meaningfully increased to the point where 
all pixels of the lowest frequency image will have the same 
value – i.e. the mean value of O. 

 

   
 U1 U2 T2 

Figure 2. Three–resolution decomposition (r=3). 

 
The point of using more than just two bands is that 

relationships can be considered not only between an original 
image’s pixel and a neighbourhood of fixed area but also 
between neighbourhoods of different areas. Furthermore, 
differences between bands of this multi–resolution image 
representation can be computed in terms of all three 
dimensions of a colour space, rather than only in terms of 
lightness, as has been the case in some previous work.3,8,9 
This allows for dealing with local changes not only in 
lightness but also in chroma and hue. 

Based on the above concepts, a multi–resolution and 
full–colour spatial gamut mapping algorithm (MSGM) is 
proposed in this paper. Its aim is to maintain an original 
image’s overall colour appearance as well as spatial 
variation as much as is possible within the limits of a 
reproduction medium’s gamut. This will be attempted by 
taking an original and first computing a multi–resolution 
decomposition of it. Then the lowest–resolution band will 
be gamut mapped and the difference between the lowest and 
next higher bands from the original decomposition will be 
added to it. The result will again be gamut mapped and the 
process will be repeated until all bands from the original 
decomposition are incorporated again into the gamut 
mapped image.  
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Figure 3. Framework of MSGM algorithm. 
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In detail the basic framework of the proposed algorithm 
(Fig. 3) is the following whereby the effect of several 
options will be explored at each step: 
1. Multi-resolution decomposition with various filter sizes 

r = {3, 7, 13, 19, 25, 31} and decomposition bands n = 
{2, 4, 6, 8, 10} and using mean filtering (MF) to obtain 
low-pass versions of an image. Note that image is filtered 
in all three channels of CMA97s2 Jab, as opposed to the 
processing being restricted to lightness, which is more 
typical of previously proposed spatial GMAs. 

2. Lightness compression of the lowest spatial-frequency 
band either in a linear (LC) or sigmoidal2 (SC) way or not 
at all. 

3. Initial gamut mapping using the hue–preserving 
minimum ∆E clipping method (HPMINDE) for the 
lowest spatial frequency band (band n). This step 
establishes approximate colours for the reproduction 
pixels, which will be modified by subsequent steps. Other 
options for this gamut mapping are clipping towards the 
lightness of the cusp (CUSP) and clipping towards the 
centre of colour space Jab=[50,0,0] (SCLIP). 

4. Addition of difference between the current (i) and next 
higher (i-1) band from the original image decomposition 
to the gamut mapped reproduction at band i. Here the 
absolute difference can be added or it can first be linearly 
compressed according the ratio of the lightness ranges of 
the reproduction and original media.  

5. Subsequent gamut mapping using SCLIP clipping to 
preserve more spatial detail. Other options are HPMINDE 
and CUSP clipping. 

6. If n > 2 and i > 2, go to step 4, otherwise terminate. 
 
Given the above framework, the underlined option in 

each of the above steps is used to define a reference MSGM 
algorithm (rMSGM). The following sections will informally 
explore the effect of varying one of these options at a time 
as compared with the result of rMSGM. 

Exploring Effects Of MSGM Options 

Performance Of rMSGM 

    

    

Figure 4. Effect of GMAs on image properties (left to right: 
original, HPMINDE, SGCK and rMSGM).  

First, however, it is useful to see how rMSGM 
compares with existing non–spatial GMAs. Fig. 4 therefore 
shows how a number of parts from the SKI image are 
treated by rMSGM and the HPMINDE and SGCK 
algorithms. This image and the latter two GMAs are 
specified in the CIE TC8–03 Guidelines for the Evaluation 
of Gamut Mapping Algorithms.10 

Using rMSGM shows that it performs better for these 
image parts than either HPMINDE or SGCK. It reduces 
colour differences as compared with SGCK especially for 
the blue boots and it also preserves more spatial detail than 
HPMINDE. However, for the red coat, rMSGM preserves 
more spatial detail than HPMINDE, but less than SGCK. 
The overall performance of the new algorithm can be seen 
to show a combination of the strengths of HPMINDE and 
SGCK as it can preserve both colour appearance and spatial 
information.  

Filter Size And Number Of Decomposition Bands 
The first pair of options – filter size and number of 

decomposition bands – relates to how the multi–resolution 
decomposition is computed. Here increasing filter size 
results in more spatial detail being maintained, however, 
with the drawback of clipping and halo (or blooming) 
artefacts becoming more serious. In Fig. 5 the effect of 
changing filter size is shown and it can be seen that while 
r=3 does not preserve detail as well as other options, going 
beyond r=7 only introduces artefacts. 

 
 

    

Figure 5. Effect of varying filter size. (left to right: original, r=3, 
r=7 and r=25). 

 
 
In terms of reproduction quality increasing the number 

of decomposition bands has a similar effect to increasing 
filter size. However, the clipping and halo artefacts are not 
as strong as those for increased filter size. This is so partly 
because the combined effect of having multiple bands and a 
fixed filter size is in effect not a full mean filtering but a 
centrally weighted filtering. From among the numbers of 
decomposition bands considered here, four gave the best 
compromise between detail preservation and absence of 
artefacts.  
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Initial Lightness Compression 

    

Figure 6. Initial lightness compression (left to right: original, 
none, linear, sigmoidal). 

 
 
As the lowest frequency band contains information 

about the overall colour appearance of image regions, its 
reproduction could benefit from more advanced pixel–
colour–only methods developed previously. Fig. 6 therefore 
shows the effect of having initial lightness compression, 
performed either linearly or in a sigmoidal way, as 
compared to not having any initial lightness processing, as 
is the case in rMSGM.  

Figure 6 shows that dark neutral region can be 
reproduced better when lightness compression is used. 
However, linear compression can amplify detail while 
sigmoidal compression gives the closest match to the 
original.  

Initial GMA 
The choice of initial GMA is of great importance in the 

context of this algorithm as it serves two purposes. First, its 
aim is to give all parts of a reproduction a similar colour 
appearance to the corresponding parts of the original. 
Second, it needs to provide a starting point from which the 
subsequent addition and gamut mapping of higher 
frequency bands can preserve detail. While the first reason 
lead to the use of HPMINDE in the reference version of 
MSGM, Figure 7 shows that the SCLIP algorithm gives 
better results in terms of detail preservation. The reason for 
this is that while HPMINDE is, by definition, good for 
reproducing individual colours well, it suffers from 
mapping entire 2D regions of colour space onto single 
reproduction gamut boundary colours. SCLIP on the other 
hand always maps only 1D regions (i.e. lines) onto single 
colours and it therefore less likely to remove variation. 
While the CUSP clipping algorithm might in theory seems 
like a better choice than SCLIP, it can cause serious 
clipping artefact when the cusp is close to the extremes of 
the lightness range (second row of Fig. 7). 

 
 
 
 
 

    

    

Figure 7. Effect of initial GMA (left to right: original, HPMINDE, 
CUSP, SCLIP). 

Subsequent GMA 

    

Figure 8. Effect of subsequent GMA (left to right: original, SCLIP, 
CUSP, HPMINDE). 

 
The role of this algorithm is exclusively the 

preservation of spatial variation and the effect of using 
HPMINDE and the CUSP algorithm instead of SCLIP, 
which was chosen for rMSGM is shown in Fig. 8. Here it 
can be seen that the difference between using SCLIP and 
HPMINDE is negligible, while using CUSP results in some 
edge artefacts. 

Proposed MSGM Options 

Based on the above investigation of options affecting the 
proposed framework, the variant of the MSGM algorithm 
that will be psychophysically evaluated is the following: 

First, use a low-pass mean filter with a size of 7×7 
pixels and compute a 4–band decomposition of an original 
CAM97s2 Jab.11 Second, use sigmoidal lightness 
compression on the lightness (J) channel of the lowest 
frequency band image, then apply initial gamut mapping 
using the SCLIP algorithm (clipping towards point on 
lightness axis with J=50) to the lightness–rescaled lowest 
frequency band image. Third, the difference between the 
current and the next higher frequency images is added to the 
current gamut mapped image after a linear compression 
using the ratio of the reproduction medium and original 
medium lightness ranges. Fourth, subsequent gamut 
mapping is performed using the SCLIP algorithm. The third 
and fourth steps are repeated until the highest frequency 
band is included in the reproduction. 
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Evaluation Of GMA Accuracy 

To evaluate the performance of the proposed spatial gamut 
mapping algorithm, a psychophysical experiment was 
carried out following draft CIE TC8-03 Guidelines.10 In this 
experiment the following six GMAs were compared: 
HPMINDE; SGCK; the basic spatial GMA proposed by 
Bala et al. (XSGM);8-9 the spatial GMA proposed by Bala et 
al. that used inverse-gamma-inverse12 lightness compression 
(XIGI-SGM); MSGM4 – the new spatial gamut mapping 
proposed in this paper; MSGM2 – a simplified version of 
MSGM4 using only two decomposition bands. 
 

 

 

Figure 9. CAM97s2 colour gamuts of CRT (mesh) and printed 
medium (solid) used in experiment. 

 
A total of 15 test images were used in this experiment 

whereby they were selected following the Guidelines and 
included a broad range of image types. For each original, 
the six gamut mapped images were printed on plain paper 
using a Canon BJC-6100 bubble-jet printer and all images 
had a white border. The images sent to the printer had the 
same resolution as the originals displayed on an Apple 21-
inch Studio Display CRT. Reproductions were viewed in a 
viewing booth with a light source simulating illuminant D65 
and against a mid-grey background. The CRT’s white point 
was set to be as close as possible to the plain paper’s white 
in the viewing booth. Both monitor and viewing booth were 
set up in a dark room side–by–side and viewed by observers 
from approximately 75 cm distance. The colour gamuts of 
the original and reproduction media are shown in Fig. 9. 

A category judgement technique13 was then used and 15 
observers judged the accuracy of an image’s reproduction 
on an equi–interval accuracy scale from zero to six. Here 
zero represents the least accurate reproduction while six 
represents the most accurate reproduction. Observers were 
asked to judge into which category each particular stimulus 
belongs. 

Experimental Results 

To compare the accuracy of the chosen GMAs, the mean 
category values for each reproduction made by a given 
GMA were computed. From these values (Fig. 10), it can be 
seen that the XIGI-SGM and MSGM4 algorithms are 
significantly more accurate than the other methods, while 
not being significantly different from each other. The worst 

accuracy is had by HPMINDE and XSGM. Note that the 
scale on which these results are reported is very different 
from pair comparison scales, which are relative to a given 
set of images, whereas the present scale was defined for 
observers to span the entire range of accuracy levels they 
can imagine. 

In order to get a better understanding of the 
experimental results additional methods of analysis are 
proposed here. In addition to considering the overall, mean 
performance of an algorithm for a set of test images, it is 
also of value to know how often each algorithm is in the 
group most accurate and statistically indistinguishable 
group of GMAs.  

In addition to the above information, which again 
shows a similar result to what is seen in Fig. 10, it is also of 
interest to see what the same statistics are in a way that 
takes into account the mean accuracy of all reproductions of 
a given original. In other words this will show whether a 
given algorithm is in the most accurate group predominantly 
for images that are reproduced accurately or inaccurately 
using all GMAs. The frequency of a GMA being in the most 
accurate group as a function of original image mean 
accuracy is therefore shown in Fig. 12. 

 

0

1

2

3

4

5

6

hp

sg
ck

xs
gm xi
gi

-
sg

m

m
sg

m
2

m
sg

m
4

GMAs

A
cc

ur
ac

y

 
Figure 10. Overall accuracy of evaluated GMAs (error–bars 
represent 95 percent of judged category values). 

 
Figure 11. Frequency of GMA being in most accurate group. 

 
Figure 12. Frequency of being in most accurate group as function 
of mean accuracy. 
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Here it can be seen that at one end of the scale 
HPMINDE and XSGM are very unlikely to be the most 
accurate GMA for any kind of image, even though they do 
perform well for some specific images. Further it is 
interesting to compare the two GMAs that perform most 
accurately overall. For images having mean category values 
larger than 4, XIGI-SGM outperforms MSGM4 but for 
images having mean category values smaller than 4, 
MSGM4 outperforms XIGI-SGM. As in practice it is 
absolute performance that is important, MSGM4 has the 
advantage over all other methods tested here that it 
performs better especially for images that on average are 
reproduced inaccurately, while for images that are 
reproduced accurately by all algorithms it is not very 
different from the mean. Further details of the experimental 
results can be found elsewhere.14 

Conclusions 

The gamut mapping algorithm presented here performs 
full–colour gamut mapping of an image by transforming 
colour information in it sequentially for a number of spatial 
frequency bands. Its starts with an initial lightness 
compression followed by a gamut mapping transformation 
of the lowest frequency band. This transformation intends 
both to preserve the colour appearance of image regions and 
to provide a starting point for the processing of subsequent 
bands that allows for the reproduction of the original’s 
spatial variation. In exploring the various options of such an 
approach a set of choices was made that informally resulted 
in the most faithful reproduction of original appearance. 

The performance of new spatial GMA proposed here 
(MSGM4) was then evaluated psychophysically and it was 
shown that it overall performs equally with a previously 
published algorithm proposed by Bala et al.8,9 The 
advantage of the present algorithm is, however, that it 
performs particularly well in relative terms for images that 
are not reproduced accurately by any of the GMAs 
evaluated here. As such this new GMA would be the best 
choice from among the tested algorithms since it works 
better than the others for images that are difficult to 
accurately reproduce and since it also works well for images 
that all of these algorithms reproduce accurately. 
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