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Abstract
Colorimetric models are used to predict printer output col-
ors from a set of toner control values. One such a model
is the Neugebauer model, which predicts the spectral re-
flectance of the printed colors. This paper presents a new
method for estimating the parameters (dot growth func-
tions and primary reflectances) of the Neugebauer model
from a set of measured spectral reflectances. Using infor-
mation on the size of the uncertainty, a robust estimation
algorithm (REA) is proposed to obtain a model with low
sensitivity to undesirable and unpredictable variations and
uncertainty. A case study using a high-end color printer
shows that REA is consistently more robust than existing
methods.

1. Introduction

Printer calibration plays a central role in print quality as-
surance. Calibration is intended to guarantee that a given
printer will consistently output the “right colors,” despite
component aging and toner variation. A characterization,
or a model, of the color printer is required as a first step
for most calibration methods [13, 4]. Once available, this
model is inverted so that the digital control values (the
printer inputs) can be calculated as a function of the de-
sired output color.

Techniques for printer characterization can be grouped
in two categories: model-based approach, and empirical
or interpolation-based approach. The interpolation-based
approach has the potential of being more accurate [6, 5] if
a large enough number of experiments is available. The
model-based approach takes advantage of the physics be-
hind the process to achieve accuracy even in areas of the
color space where experimental data is sparse [1, 2, 10,
13].

The present paper considers the characterization of dig-
ital color printers using the model-based approach. In par-
ticular, this work uses the spectral Neugebauer model [12].
The parameters of this model are usually determined from
spectral measurements of the printed colors. Several im-
portant papers, e.g. [10, 2, 1, 13], have used this approach

to develop or survey algorithms for parameter estimation.
Spatial nonuniformities and color drifts may give different
characterizations of the same printer depending on when
and where on the paper the samples are taken. To our
knowledge, the available techniques do not account for
these variations as they do not utilize any prior information
on uncertainty associated with the measured reflectances.

This work introduces a mathematical framework that
explicitly incorporates uncertainty information in the esti-
mation of the model parameters. The notion of worst-case
spectral approximation error is introduced, and a closed
form expression for evaluating this error is given. We pro-
pose to obtain parameter estimates by minimizing the
largest worst-case error over all available experiments. The
robust estimation algorithm (REA) is developed to solve
this optimization problem. A specific estimation problem
is solved for a high-end xerographic printer. The model ob-
tained with REA is compared with the ones from two other
algorithms based on least squares and total least squares
[13]. This comparative analysis suggests that REA yields
the most robust model.

Notation

ro True (unknown) reflectance
r̂ Model output reflectance
r̂P Model primary reflectance.
r Measured reflectance
rC , rM , rY , rK Cyan, magenta, yellow, and black single

colorant measured reflectances
C, M , Y , K Cyan, Magenta, Yellow, and Black digital

control values
c, m, y, k Cyan, magenta, yellow and black nondimensional

actual areas
w Neugebauer area
λ Wavelength
σ Reflectance error bound
Ro Reflectance uncertainty set

2. The Neugebauer Printer Model

In this paper we consider four-colorant printers modeled
by the spectral Neugebauer equation studied in [9, 11, 12]
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and given by

r̂(λ) =

{
16∑

i=1

wir̂
1/n
P,i (λ)

}n

(1)

where r̂(λ) is the output reflectance at wavelength λ pre-
dicted by the model, wi is a positive weight representing
the so-called Neugebauer primary area, r̂P,i(λ) denotes the
best available estimate for the ith primary reflectance, and
the number n is the Yule-Nielsen correction factor. See
reference [12] for further details on this model. For print-
ers using rotated halftone screens, the Neugebauer areas
can be modeled with the so-called Demichel equations (2)

w1 = (1 − c)(1 − m)(1 − y)(1 − k) (2a)
w2 = c(1 − m)(1 − y)(1 − k) (2b)
w3 = (1 − c)m(1 − y)(1 − k) (2c)
w4 = (1 − c)(1 − m)y(1 − k) (2d)
w5 = (1 − c)(1 − m)(1 − y)k (2e)
w6 = cm(1 − y)(1 − k) (2f)
w7 = c(1 − m)y(1 − k) (2g)
w8 = c(1 − m)(1 − y)k (2h)
w9 = (1 − c)my(1 − k) (2i)

w10 = (1 − c)m(1 − y)k (2j)
w11 = (1 − c)(1 − m)yk (2k)
w12 = cmy(1 − k) (2l)
w13 = cm(1 − y)k (2m)
w14 = c(1 − m)yk (2n)
w15 = (1 − c)myk (2o)
w16 = cmyk (2p)

where c,m, y and k are the nondimensional actual areas
occupied by cyan, magenta, yellow and black toner, re-
spectively. Theses areas are determined by the digital con-
trol values C,M, Y and K, which are nondimensional in-
tegers from 0 to 255 used to “tell the printer” how much
cyan, magenta, yellow and black toner needs to be placed
on the paper.

Figure 1 depicts the input-output printer model com-
posed by equation (1), the Demichel equations (2), and
the dot growth functions C �→ c, M �→ m, Y �→ y, and
K �→ k. For the model to be fully specified the fol-
lowing need to be known: (1) the dot growth functions
C �→ c, M �→ m, Y �→ y, and K �→ k; (2) the model
primary reflectances r̂P,1(λ), . . . , r̂P,16(λ); (3) the Yule-
Nielsen factor n. These parameters may be determined in
the following three steps

1. Measure all 16 primary reflectances rP,1, . . . , rP,16

2. Run a predefined set of input-output experiments,
where the reflectances r(λ) of color patches printed
in response to known digital control input values
C,M, Y,K are measured

3. Determine samples of the dot growth functions c,
m, y, k, the Yule-Nielsen factor n, and (optionally)

the corrected primary reflectances by minimizing a
suitable measure of modeling error.
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Figure 1: Input-output model for a color printer

3. The Worst-Case Modeling Error

Let

‖x‖2 =

√√√√ N∑
k=1

x2
k

denote the �2 norm of the sequence x = (x1, . . . , xN ).
Suppose that the printer model in Figure 1 is known, and
let ro = (ro(λ1), . . . , ro(λN )) denote the true (generally
unknown) output reflectance sequence (at wavelengths λ1,
. . ., λN ) in response to known inputs C, M , Y , K. The �2

model approximation error E is defined as

E = ‖r̂ − ro‖2 (3)

where r̂ = (r̂(λ1), . . . , r̂(λN )) is the output reflectance
sequence obtained from the model in equation (1).

The error E is unknown. Thus, a natural measure of
model performance is the worst-case approximation error
Eworst defined by

Eworst = max
ro∈Ro

‖r̂ − ro‖2 (4)

where Ro is a known set containing the true output re-
flectance ro, which we now define as

Ro = {ro s.t. σ−(λk) ≤ ro(λk) − r(λk) ≤ σ+(λk) (5)

∀k = 1, . . . , N}
where σ−(λk) and σ+(λk) are given lower and upper er-
ror bounds at wavelength λk. The following result gives
a closed-form expression to compute the worst-case error
in (4).

Proposition 1 ([8]) With Ro given by (5), the worst-case
approximation error defined in (4) satisfies

Eworst =
∥∥∥∥
∣∣∣∣r̂ − r − σ+ + σ−

2

∣∣∣∣+ σ+ − σ−

2

∥∥∥∥
2

(6)
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where σ− = (σ−(λ1), σ−(λ2), . . . , σ−(λN )) and σ+ =
(σ+(λ1), σ+(λ2), . . . , σ+(λN )) are the lower and upper
bound sequences; r = (r(λ1), r(λ2) . . . , r(λN )) is the
measured reflectance sequence; and r̂ = (r̂(λ1), r̂(λ2) . . . ,
r̂(λN )) is the model output reflectance sequence computed
using (1).

4. Printer Modeling Via Minimization Of
Worst-Case Errors

This section describes how to obtain a printer model that
attempts to minimize the worst-case error in (6) over a set
of multiple experiments. The experimental data necessary
for this analysis is listed first, followed by a summary of
the model parameters to be estimated and the cost function
to be optimized.

Primary reflectances The measured primary reflectance
sequences are denoted by

rP,j = (rP,j(λ1), . . . , rP,j(λN )) (7)

where j = 1, . . . , 16, indexes the specific reflectance and
λ1, . . . , λN , are the wavelengths of interest. These re-
flectances are obtained in response to all 16 possible com-
binations of control inputs C,M, Y,K where each control
value is either 0 or 255.

Responses to single colorant inputs The measured out-
put reflectance sequences in response to a set of single col-
orant digital control values C, M , Y , K, are denoted by

rC,j = (rC,j(λ1), . . . , rC,j(λN )) (8a)

rM,j = (rM,j(λ1), . . . , rM,j(λN )) (8b)

rY,j = (rY,j(λ1), . . . , rY,j(λN )) (8c)

rK,j = (rK,j(λ1), . . . , rK,j(λN )) (8d)

where the subindex C, M , Y , or K represent the reflectance
obtained in response to digital control values of the form
(C, 0, 0, 0) (cyan only), (0,M, 0, 0) (magenta only), (0, 0,
Y, 0) (yellow only), (0, 0, 0,K) (black only), respectively.
The subindex j is an integer that denotes the experiment
number and it runs from 1 to Q.

Responses to multicolorant inputs To obtain a good
representation of the input color space, colors combining
C, M , Y and K are also included. We denote the mea-
sured output reflectance sequences of these colors by

rj = (rj(λ1), . . . , rj(λN )) (9)

where j = 1, . . . , L and L denotes the number of multi-
colorant experiments.

Uncertainty bounds The uncertainty bounds were intro-
duced in equation (5). They are denoted by

σ+
j = (σ+

j (λ1), . . . , σ+
j (λN )) (10a)

σ−
j = (σ−

j (λ1), . . . , σ−
j (λN )) (10b)

where the subindex j indicates the reflectance sequence
under consideration.

Model parameters The model parameters to be estimated
using the previously described data are: the four dot growth
functions C �→ c, M �→ m, Y �→ y, K �→ k, the cor-
rected primary reflectance sequences r̂P,1, . . . , r̂P,16, and
the Yule-Nielsen correction factor n.

Ideal problem We would like to obtain the model pa-
rameters that minimize the worst-case approximation error
over the experimental data. That is, to minimize the cost
function

max
j

Eworst,j (11)

where Eworst,j is the worst-case approximation error cal-
culated from (6), using the measured primary reflectances
rP,j in (7), the measured reflectances (8) or (9) depending
on the index j, and the bounds in (10).

5. The Robust Estimation Algorithm (REA)

The ideal minimization problem defined above involves
a joint search for the actual areas (the dot growth func-
tions) and the primary reflectances. This is a difficult non-
convex search with local optima that may not be global.
This section describes an algorithm to compute a subopti-
mal solution to this problem by splitting it into two simpler
problems: the estimation of the dot growth functions and
the estimation of the corrected primary reflectances, both
problems with constant n. These problems are simpler be-
cause they do not involve products amongst the optimiza-
tion variables.

5.1. Estimation of dot growth functions

For the set of single colorant control values, the nonlinear
Demichel equations (2) become an affine relation between
the Neugebauer areas w1, w2, . . . , w16 and the actual ar-
eas c,m, y, k. Therefore, the model reflectances for single
colorant inputs are simplified to the following

Digital Control Values Reflectance

C = Cj , M = Y = K = 0 r̂C,j =
{

(1 − cj)r̂
1/n

P,1 + cj r̂
1/n

P,2

}n
(12a)

M = Mj , C = Y = K = 0 r̂M,j =
{

(1 − mj)r̂
1/n

P,1 + mj r̂
1/n

P,3

}n
(12b)

Y = Yj , C = M = K = 0 r̂Y,j =
{

(1 − yj)r̂
1/n

P,1 + yj r̂
1/n

P,4

}n
(12c)

K = Kj , C = M = Y = 0 r̂K,j =
{

(1 − kj)r̂
1/n

P,1 + kj r̂
1/n

P,5

}n
(12d)
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It follows from equation (12) that the minimization of
the largest worst-case error over the actual areas decouples
into the following subproblems

cj =

arg mincj∈[0,1]

∥∥∥∥
∣∣∣∣r̂C,j − rC,j − σ+

j
+σ−

j

2

∣∣∣∣+ σ+
j
−σ−

j

2

∥∥∥∥
2

(13a)

mj =

arg minmj∈[0,1]

∥∥∥∥
∣∣∣∣r̂M,j − rM,j − σ+

j
+σ−

j

2

∣∣∣∣+ σ+
j
−σ−

j

2

∥∥∥∥
2

(13b)

yj =

arg minyj∈[0,1]

∥∥∥∥
∣∣∣∣r̂Y,j − rY,j − σ+

j
+σ−

j

2

∣∣∣∣+ σ+
j
−σ−

j

2

∥∥∥∥
2

(13c)

kj =

arg minkj∈[0,1]

∥∥∥∥
∣∣∣∣r̂K,j − rK,j − σ+

j
+σ−

j

2

∣∣∣∣+ σ+
j
−σ−

j

2

∥∥∥∥
2

(13d)

where r̂C,j , r̂M,j , r̂Y,j , and r̂K,j , for j = 1, . . . , Q, are the
model output reflectance sequences computed using (12),
and rC,j , rM,j , rY,j , and rK,j are the measured reflectance
sequences corresponding to single colorant inputs defined
in (8). This result follows from the fact that the minimiza-
tion of the maximum of a set of functions of independent
variables is equal to the maximum of the set containing the
minimum of those functions. See [8] for further details.

5.2. Estimation of corrected primary reflectances

Considering the dot-growth functions and the Yule-Nielsen
factor fixed, the estimation of the corrected primary se-
quences r̂P ,i, for i = 1, . . . , 16, can be obtained by min-
imizing the largest worst-case error in (11) over the set
of primary sequences consistent with the measurements.
More precisely, the corrected primary sequences can be
obtained from

[r̂P,1, . . . , r̂P,16] =

arg min max
j

∥∥∥∥
∣∣∣∣r̂j − rj −

σ+
j + σ−

j

2

∣∣∣∣+ σ+
j − σ−

j

2

∥∥∥∥
2

(14)

s.t. r̂P,1 ∈ Ro,1, . . . , r̂P,16 ∈ Ro,16

where r̂j is the model output reflectance sequence cal-
culated using equation (1) with Neugebauer areas com-
puted from the Demichel equations (2) and the given dot
growth functions. In (14), rj is the measured reflectance
corresponding to single or multicolorant responses in (8)
or (9), respectively, and the bounds σ−

j and σ+
j in (10) cor-

responding to the measured reflectance rj .

5.3. The robust estimation algorithm (REA)

We summarize our approach in the following robust esti-
mation algorithm (REA):

1. Fix the primary reflectances to the measured se-
quences (7). Compute Q samples of the dot-growth

functions C �→ c, M �→ m, Y �→ y, K �→ k by
solving the scalar optimization problems defined in
equation (13).

2. Set the dot-growth functions to the ones computed
in step 1 and compute N samples of the corrected
primary reflectances by solving (14).

3. Execute steps 1 and 2 for several values of n to iden-
tify the Yule-Nielsen correction factor n that mini-
mizes the largest worst-case approximation error de-
fined in (11).

The parameter estimation could be improved by iterat-
ing over steps 1-3. For instance, one could obtain a first
estimate of the parameters using REA (steps 1-3) and re-
fine this estimate by applying iteratively REA but now re-
placing the measured primary reflectances in step 1 with
the corrected ones from the previous iteration.

The minimization problems in steps 1 and 2 can be
solved using functions from the Matlab Optimization Tool-
box 7. The dot growth functions can be computed solv-
ing (13) with the Matlab function fmincon. The cor-
rected primary reflectances can be computed solving (14)
with the Matlab function fminimax.

6. Modeling of a high-end xerographic color
printer

This section illustrates the REA, and compares it with the
least squares (LS) and total least squares (TLS) algorithms
presented in [13].

A set of color charts compatible with the LS and TLS
methods explained in [13] was generated. Spectral re-
flectances for parameter estimation and model validation
are measured from color patches generated as explained
below.

The training data set used for parameter estimation is
divided in two subsets of reflectances: the response to sin-
gle colorant inputs and the response to multicolorant in-
puts. The single colorant responses use Q=17 single dig-
ital control input as shown in (8). The multicolorant re-
sponses (9) use 17 values of C, M , Y control inputs ganged
together (C = M = Y ) with K = 0, and 17 values of each
single control input with the remaining digital control in-
puts set to mid-range. This gives a total of 153 control
values for the training set.

The test set used for model validation consists of 125
control values taken from a homogeneous 5×5×5 grid in
the CMY color space and then converted to the CMY K
color space using a standard undercolor removal algorithm.
In addition, the responses to 16 control values correspond-
ing to the primary reflectances in equation (7) are also
measured.
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Patches corresponding to identical control inputs were
printed and measured at four different spatial locations on
the charts. Reflectances were measured at 10nm intervals
between 380nm and 730nm using a Gretag spectropho-
tometer model SPM50. The reflectances used for parame-
ter estimation and model validation were obtained averag-
ing the four measurements available for each of the control
value.

6.1. Printer modeling using REA

A printer model was obtained using the basic REA ex-
plained before. The algorithm requires the sequences σ−

and σ+ defined in (10). Using the four measurements
available per control input in the training set, a symmetric
bound sequence σ− = −σ+ was constructed and used for
the computation of the worst-case errors and to constrain
the search for corrected primary reflectances as required
by (14).

To determine the sequence σ+ we proceed as follows.
First we remove from the measured reflectances the mean
of each four-measurement group. We call this data mea-
surement errors. Analysis shows that over 90% of the
measurement errors have absolute value smaller than twice
the standard deviation of the data, which is consistent with
a normal-like distribution of the measurement errors. See
Figure 2. The error bound sequence σ+ is taken to be twice
the standard deviation of the measurement errors.

The results of step 1 of REA are shown in Figure 3.
This figure shows the four dot-growth functions C �→ c,
M �→ m, Y �→ y, and K �→ k. This result is obtained
with Yule-Nielsen factor n = 7.7, a choice that will be
justified later.

Figure 4 shows the first four primary reflectances. The
solid lines represent the corrected primaries r̂P,j from step
2 of REA. The dotted lines give the measured primary re-
flectances rP,j . The dashed lines are the limits rP,j − σ+

and rP,j + σ+ that define the feasible set for the corrected
primaries.

The REA was run for different Yule-Nielsen correction
factors n to identify the best one. An optimal n minimizes
the largest worst-case approximation error defined in (11).
From Figure 5 it follows that n = 7.7 is optimal.

6.2. Comparison with other methods

This section compares the performance of the model ob-
tained using REA with two other models obtained using
least squares (LS) and total least squares (TLS) algorithms
[13]. The performance comparisons are done analyzing
the distribution (over the experiments) of the worst-case
errors. We look at the cumulative distribution of the worst-
case error over two different sets of experiments: the train-
ing data set and the test data set. We also analyze the distri-

bution of the approximation error when the real (unknown)
reflectances are randomly generated.

The LS and TLS models considered below were calcu-
lated applying the algorithm in [13] to single and multicol-
orant responses defined in (8) and (9), respectively. Unlike
the results in [13], further primary reflectance estimation
was not applied because it requires to have an additional
set of experiments not available for this work.

Worst-case approximation errors over the training set

Figure 6 shows the cumulative frequency distribution of
the worst-case error Eworst computed using equation (6).
This plot shows how the worst-case error distributes among
the experiments in the training set. The plot shows that
REA is the best of all three models when evaluated with the
worst-case approximation error on the training set. From
Table 1 it follows that REA reduces the largest worst-case
error (100th percentile) by 28% and 35% relative to TLS
and LS, respectively.

Method Percentiles
50th 75th 100th

LS 0.1226 0.1431 0.1981
TLS 0.1167 0.1312 0.1783
REA 0.1114 0.1213 0.1279

Table 1: Percentile comparison of the worst-case approximation
error with training data

Worst-case approximation errors over the test set

The robustness of the estimation scheme needs to be demon-
strated on validation data that is not used for parameter
estimation. The cumulative frequency distribution of the
worst-case approximation error with test (validation) data
is shown in Figure 7. Table 2 quantifies the comparison.
Notice that REA is the best performing model for the 75th

percentile and 100th percentile (largest worst-case error
over the test data) with reduction of worst-case errors rang-
ing from 3.3% to 9.1% for TLS and LS, respectively.

Method Percentiles
50th 75th 100th

LS 0.1431 0.1739 0.3029
TLS 0.1385 0.1669 0.2844
REA 0.1395 0.1630 0.2751

Table 2: Percentile comparison of the worst-case approximation
error with test data
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Approximation errors

Here we analyze the distribution of approximation errors
(not the worst-case) for randomly generated spectral re-
flectances. The analysis uses 5000 random reflectances for
each control value of the training set and 5000 random re-
flectances for each control value in the test set. These ran-
dom reflectances are generated from a normal distribution
with mean equal to the measured reflectance and standard
deviation equal to half the error bound sequence σ+.

Table 3 shows the percentiles of the approximation er-
ror distribution with training and test data. In all cases but
one (median with test data) REA has smaller approxima-
tion errors than LS and TLS.

Method Training Test
50th 75th 50th 75th

LS 0.0618 0.0770 0.0783 0.1054
TLS 0.0566 0.0665 0.0736 0.1002
REA 0.0525 0.0600 0.0744 0.0990

Table 3: Percentile comparison of the approximation error with
training and test data

Approximation errors in the L*a*b* color space

Approximation errors were also computed in the L*a*b*
color space1 using the color difference metric ∆E∗

ab [3]. A
distribution of ∆E∗

ab using random reflectances was gen-
erated. Percentiles of the error distribution are shown in
Table 4. In all cases, the approximation error with REA is
smaller than with LS or TLS.

Method Percentiles
50th 75th 95th

LS 2.36 3.52 5.40
TLS 2.16 3.37 5.24
REA 2.01 3.10 5.15

Table 4: Percentile comparison of the ∆E∗
ab approximation error

7. Conclusions

A new framework for parameter estimation of printer mod-
els has been presented. This framework enables the in-
corporation of modeling uncertainty into the problem for-
mulation explicitly. We have proposed to measure model
quality using the largest approximation error that can take
place in spectral space when the measured reflectances are
within known limits. A closed form expression for the

1Reflectances are converted to L*a*b* color space under the CIE ilu-
minant D50

worst-case approximation error has been given. This ex-
pression is readily computed from available data.

A robust parameter estimation algorithm (REA) was
presented. This algorithm is based on the idea that the
most robust set of parameters is the one that minimizes the
worst-case approximation error. This minimization prob-
lem is non convex and hard to solve. REA gives a subopti-
mal solution to this problem by splitting it into two simpler
subproblems, the estimation of dot growth functions and
the estimation of the corrected primary reflectances.

The results of a case study using a high-end color printer
were given. A comparative analysis between REA and ex-
isting algorithms based on the least squares and total least
squares methods was presented. The analysis of approxi-
mation errors (worst-case and otherwise) shows that REA
is consistently more robust than LS and TLS in the sense
that it achieves the lowest errors over the various data sets.
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Figure 2: Distribution of measurement error at λ = 500nm (left)
and λ = 620nm (right). Bar graph: data. Solid: normal approx-
imation.
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Figure 3: Dot growth functions obtained using REA, with Q=17
computed samples.
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Figure 4: Primary reflectances no. 1-4. Dotted: measured re-
flectance. Dashed: bounds. Solid: REA.
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Figure 5: Largest worst-case error calculated from (11) over the
training data set as a function of the Yule-Nielsen factor n.
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Figure 6: Cumulative frequency distribution of worst-case ap-
proximation errors over the training data set. Solid: REA. Dash-
dot: TLS. Dotted: LS.
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Figure 7: Cumulative frequency distribution of worst-case ap-
proximation errors over the test data set. Solid: REA. Dashdot:
TLS. Dotted: LS.
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