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Abstract

Many image formation processes are complex interactions
of several sub-processes and the analysis of the resulting
images requires often to separate the influence of these
sub-processes. An example is the formation of a color
image which depends on the illumination, the properties
of the camera and the objects in the scene, the imaging
geometry and many other factors. Color constancy algo-
rithms try to separate the influence of the illumination and
the remaining factors and are thus typical examples of the
general strategy. An important tool used by these meth-
ods are invariants ie. features that do not depend on the
state of one (or several) of the sub-processes involved. Il-
lumination invariants are thus features that are independent
of illumination changes and depend only on the remaining
factors such as material and camera properties.

We introduce transformation groups as the descriptors
of the sub-processes mentioned above. We then show how
they can be used to calculate the number of independent
invariants for a given class of transformations. We also
show that the theory is constructive in the sense that there
are symbolic mathematics packages that can find the in-
variants as solutions to systems of partial differential equa-
tions.

We illustrate the general theory with applications from
color computer vision. We will describe the construction
of invariants from the dichromatic and the Kubelka-Munk
reflection models in detail. Space does not permit us to
describe the detailed derivation of illumination invariants
from PCA models of illumination spectra but it can be
shown that the construction of the invariants follows the
same mathematical procedure.

1. Introduction

Many pattern recognition models assume that the avail-
able measurements are the result of a number of different
interacting processes. A standard model for color image
formation assumes, for example, that the final color im-
age depends on the characteristics of the illumination, the
scene geometry, the properties of the materials in the scene

and the characteristics of the camera. In typical applica-
tions we are only interested in one or a few of these factors
while the others should be ignored. This is the basic idea
of invariants in pattern recognition. In the color image pro-
cessing example mentioned above we may want to ignore
the influence of the illumination source or the geometric
relations between the camera and the scene. Invariance
based mechanisms are highly successful in biological sys-
tems and we apply them all the time without even being
aware of them. They are obviously one important tool to
stabilize our perception of the world and to simplify our
interpretation of it. Typical examples from human percep-
tion are:

Color Constancy: We routinely ignore the effect of vari-
ations of the spectral characteristics of the illumi-
nants

Orientation Invariance: We can compensate to a certain
extend the influence of changes of viewing direc-
tions on the perceived image

Shape Changes: A typical, and very important example,
of this type of invariance is face perception. We can
recognize a persons face independent of large varia-
tions of its shape, often connected to emotions like
joy, sadness etc.

Permutation invariance: Often we can recognize a col-
lection of item independent of the order in which
they are arranged.

Without conditional constraints it is very difficult to solve
such invariance problems since without such constraints
we would need something like a table that collects all the
different cases that we would like to ignore. The solution
to this problem is that invariance problems can be more
easily solved if there is a law or a rule describing it. This
law or rule can often be described in the framework of
group theory and mathematical theories developed in the
last 100 years provide the tools to investigate and solve
these problems. Some of the first attempts to apply group
theoretical tools to investigate properties of biological sys-
tems (and especially perceptional invariants) go back, at
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least, to Wiener. Some of the main ideas in this area are
described in his book on Cybernetics [17, 10, 11] and have
been reinvented many times since then.

In this paper we illustrate how one part of group theory,
the Lie theory of differential equations, can be applied to
answer the following two questions:

• How many invariants exist for a given problem?

• How can we find all of them?

We will describe in detail two applications from color im-
age processing to illustrate how these techniques can be
used:

• Geometry invariants from the dichromatic reflection
model

• Geometry invariants from Kubelka-Munk models

Illumination invariants from conical illumination spaces
can be derived within the same framework but we will not
describe these results in detail. We will give a brief de-
scription of the underlying mathematical theory, develop
the color models as far as necessary and illustrate the usage
of symbolic mathematical software packages like Maple in
obtaining all the invariants of a given problem.

Before we come to a detailed description of the ap-
proach we want to make some general remarks:

• The theory we will describe is very general and the
color applications described here are only one illus-
tration of its usage, among many others

• Our primary interest is not in practical applications
but in the basic insight gained from the derivation.
We will further comment on this at the end of the
paper.

• A last issue concerns the question if the mathemat-
ical apparatus is really necessary. One answer is of
course that much of the group theory can be avoided
if the primary goal is to derive the color related in-
variants. On the other hand we feel that the current
problem provides a good illustration of the power
of the general theory. A final decision if the result
was worth the additional effort depends on the pref-
erences of the reader.

2. Construction of Invariants

The basic mathematical tool to investigate invariants is the
concept of a transformation group. We recall that a group
is a set of elements such that the each element has an in-
verse and each combination of two group elements gives
another element in the same set. A transformation group

is a special group in which all elements are transforma-
tions defined on a set. We will only consider cases where
the group elements are matrices and the sets on which they
operate are subsets of real Euclidean vector spaces. We
use the following notation: The group of transformations
is denoted by G and the set on which the transformations
operate is X . The elements in G and X are M,N, . . .
and x, y, . . . and the notation for the transformation group
is (G, X). The transformation is written as x �→ M 〈x〉 .
The two simplest examples are the shifts operating on the
real line and the rotations operating on the circle. For the
rotations this gives(

SO(2), R2
)
; (M,x) �→ M 〈x〉 = Mx

with a 2-dimensional vector x, rotation matrix M and Mx
the matrix-vector multiplication. A subgroup is a subset
of a group that is also a group. A one-parameter sub-
group is a subgroup that depends on only one parameter
and in the following this means that we can write its ele-
ments as matrix exponentials Mt = etX . Generalizing
we say a group is an k−parameter group if there are k ma-
trices X1, . . . , Xk such that all group elements have the
form M = et1X1+...+tkXk . The matrices M form the Lie-
group and the matrices t1X1 + . . .+ tkXk the Lie-algebra.
As a final concept we need the connection between the
Lie-algebra and differential operators: take a function f
defined on the set X . For a group element M we can de-
fine the new function fM (x) = f (M 〈x〉) and for a one-
parameter group we can consider ft(x) = f (Mt 〈x〉)
as a function of t. We can then compute the derivative
∂f/∂t‖t=0 and we see that every one-parameter group de-
fines a differential operator.

With these preparations we can now describe the main
mathematical results used in the following:

• A function f is an invariant for a group G if for all
elements M ∈ G we have fM (x) = f(x).

• If the set X has dimension n and the dimension of
the Lie-algebra is k then there are n−k functionally
independent invariants.

• The functionally independent invariants are solutions
to a system of k partial differential equations.

3. Applications

In this section we will now describe applications were the
construction sketched in the last section can be used to de-
rive invariants.

3.1. Invariants for the Dichromatic Model

In many applications, for example in color image segmen-
tation, color object recognition etc., the main interest is
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the physical content of the objects in the scene. Deriv-
ing features which are robust to image capturing condi-
tions such as illumination changes, highlights, shadows
and geometry changes is a crucial step in such applica-
tions [12, 1]. The interaction between lights and objects
in the scene is very difficult and requires very compli-
cated models such as Transfer Radiative Theory or Monte-
Carlo simulation methods to describe. Previous studies of
color invariance are, therefore, mostly based on simpler
semi-empirical models such as the Dichromatic Reflec-
tion Model [14], or the model proposed by Kubelka and
Munk [9], together with many additional assumptions [8,
6, 15, 3, 5]. Here we use the Dichromatic Reflection Model
(see [14]) and show how to construct invariants.

It is very difficult to describe in detail what happens
when light strikes a surface: some of the light will be re-
flected at the interface producing interface reflection, while
another part will transfer through the medium undergoing
absorption, scattering, and emission. The Dichromatic Re-
flection Model [14] describes the relation between the in-
coming light and the reflected light which is a mixture of
the light reflected at the material surface and the light re-
flected from the material body. The model assumes that
the light L(x, λ) reflected from a surface can be decom-
posed into two additive components, an interface (specu-
lar) reflectance and a body (diffuse) reflectance under all
illumination-camera geometries:

L(x, λ) = mS(x)RS(λ)E(λ)+mD(x)RD(λ)E(λ) (1)

Here x denotes geometry changes including the angle of
incidence light, the angle of remittance light and the phase
angle, etc. RS(λ) and RD(λ) are the specular and diffuse
reflectance respectively, and E(λ) is the spectral power
distribution of the incident light. The measured sensor
values Cn(x) at pixel x in the image using N filters with
spectral sensitivities given by f1(λ)...fN (λ) will be given
by the following integral over the visible spectrum:

Cn(x) =
∫

fn(λ) [mS(x)RS(λ)E(λ)

+mD(x)RD(λ)E(λ)] dλ

= mS(x)Sn + mD(x)Dn

(2)

Assume that two object points belong to the same material.
They have therefore identical reflectance functions and the
only difference are their geometrical properties. For these
two neighboring pixels x1 and x2 and channel n we have
then:[
Cn(x1)
Cn(x2)

]
=

[
mS(x1) mD(x1)
mS(x2) mD(x2)

][
Sn

Dn

]
=M

[
Sn

Dn

]
(3)

In the the framework of transformation groups we see that
the matrix M operates on the vectors (Sn Dn)′. In the

group theoretical approach it is now natural to construct
invariants for various subgroups of the group of 2 × 2 ma-
trices. A list of common subgroups is:

1. 2-D Rotations

2. Uniform scalings

3. Non-uniform scalings

4. Shears

The group of all rotations is a one-parameter group, the
group of non-uniform scalings is a two parameter group
and the full group is a four parameter group. Characteristic
for Lie-theory is the following observation: Assume you
require the transformation group to include rotations and
shears. Then the properties of Lie-algebra requires you to
include the scaling operations as well. Instead of creating
a 2-parameter group you end up with a three-parameter
group.

In most applications the camera will not only consist
of one channel but of N channels. Since we separated the
spectral properties and the non-spectral parameters we see
that the transformation matrix M is the same for all chan-
nels. Therefore we obtain in the general case the transfor-
mation group: [

C(x1)
C(x2)

]
=M

[
S
D

]
(4)

Here C(x1), C(x2), S,D are N -dimensional vectors. The

group now operates on the space
(
R

2
)N

. There are there-
fore 2N−k functionally independent invariants where k is
the dimension of the Lie-algebra. For the case of RGB
images and the full matrix group we have 2 · 3 − 4 = 2
invariants. A simple Maple program gives the following
solutions (with C(xk) = (rk, gk, bk)):

f = F1
(−g2 b1 + b2 g1

r1 g2 − r2 g1
,

b2 r1 − r2 b1

r1 g2 − r2 g1

)
(5)

If we only start with rotations and shearing then we
start with two variables but because of the Lie-structure
we have k = 3 and there are three independent invariants:

f = F1(r1 g2−r2 g1, b2 r1−r2 b1,−−g2 b1+b2 g1

r1 g2−r2 g1
)

3.2. Kubelka-Munk Theory and Invariants

The dichromatic reflection model as described in the pre-
vious section is a quite general model but it does not take
into account the physical processes once the light enters
the medium. These processes include absorption, scat-
tering, and emission. Radiative Transfer Theory [2] can
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be used to describe light transfer inside the medium. The
Kubelka-Munk model is a special case where it is assumed
that the light inside the medium is uniformly diffused and
that the properties of the medium (as described by scat-
tering and absorption coefficients) are isotropic. Under
these assumptions, only two fluxes of light propagation in-
side the medium are enough to approximately describe the
whole process. It is one of the standard tools to model
the color appearance of objects and despite all its short-
comings it is still useful in many applications and has been
used to derive invariants before (see [5, 4]). More detailed
information about the Kubelka-Munk model can be found
in [9, 13]. Here we only sketch some basic facts and derive
the invariants. The Kubelka-Munk model deals only with
two fluxes, one proceeding downwards (into the material
and denoted by i) and the other (denoted by j) directed
upwards. The downward flux is decreased by absorption
(with coefficient K) and scattering (coefficient S). Sim-
ilarly the upward flux j, which is reduced by absorption
and scattering. The total change of the upward flux con-
sists of two parts: the loss by absorption and scattering of
the upward flux and the amount added back to the upward
flux from the scattering of the downward flux. This leads
to the differential equations:

di

dx
= −(S + K)i + Sj (6)

− dj

dx
= −(S + K)j + Si (7)

If the medium has optical contact with a backing of re-
flectance Rg , at x = 0 we have the following boundary
condition:

j0 = Rgi0 (8)

If the external and internal surface reflectance at the inter-
face of the medium is denoted as r0 and r1, respectively,
and I0 denotes the incoming light to the interface, then the
following boundary conditions can be obtained at the in-
terface, x = D.

iD = I0(1 − r0) + jDr1 (9)

I0R = I0r0 + jD(1 − r1) (10)

Solving the above equations, we obtain the reflectance of
the medium

R = r0 + (1 − r0)(1 − r1) · (11)[
(1 − RgR∞)R∞ + (Rg − R∞)e−AD

]
(1 − RgR∞)(1 − r1R∞) − (R∞ − r1)(R∞ − Rg)e−AD

where

R∞ = 1 +
K

S
−

√
K2

S2
+ 2

K

S
(12)

A =
2S(1 − R2

∞)
R∞

(13)

A is a positive constant and if the medium is thick enough,
i.e. D → ∞ then

R̃ = r0 +
(1 − r0)(1 − r1)R∞

(1 − r1R∞)
(14)

clearly, R∞ is a special case of R̃ with interface reflections
r0 = r1 = 0.

If we assume in Eq. 14 that

1 − r1R∞ ≈ 1 − r1 (15)

or if we have some compensation factor like a function of
R∞

1 − r1R∞ ≈ (1 − r1)ḡ(R∞) (16)

then Eq. 14 becomes

R̃ = r0 + (1 − r0)g(R∞) (17)

The value at pixel x under illumination E(λ) and a camera
with sensitivity function fn(λ) is

Cn(x) =
∫

fn(λ)E(λ) [r0(x) + (1 − r0(x))g(R∞)] dλ

= r0(x)Sn + (1 − r0(x))Dn (18)

Clearly Eq. 18 has the same form as the dichromatic reflec-
tion model in Eq. 2 but the interpretation of this formula is
more complicated. The external surface reflectance r0(x)
depends on many factors including the incident angle of
the light, the geometrical properties of the surface, the re-
flective index of the medium, and the polarization state of
the light beam [7]. Its dependency on the wavelength can
be neglected. The Kubelka-Munk coefficients K and S are
the absorption and scattering coefficients of the medium
along the direction in the Kubelka-Munk model. A light
beam travelling inside the medium with a direction differ-
ent from the direction in the Kubelka-Munk model will be
absorbed and scattered more since it has to travel a longer
distance. Therefore K and S depend on the direction of the
light beam compared to the direction in the Kubelka-Munk
model. However their ratio K/S depends only on the ab-
sorption and the scattering coefficients per unit path length
of the medium. Thus R∞ depends only on the material,
but not on the direction of the light beam. Consequently,
the terms Sn and Dn are independent of the geometrical
properties (the incoming light and surface). A geometri-
cal color invariant should thus be independent of the r0(x)
terms.

Considering two points with coefficients r
(1)
0 , r

(2)
0 and

pixel values C
(1)
n (x), C(2)

n (x) gives the equation (compare
to Eq.(4))[
C(1)(x)
C(2)(x)

]
=

[
r
(1)
0 1 − r

(1)
0

r
(2)
0 1 − r

(2)
0

][
S
D

]
= M

[
S
D

]
(19)
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The problem is now that the matrices M operate on the
variables S, D but that we only have access to the mea-
surements C. After some manipulations it can be shown
that the correct differential equations can be obtained in
the following way: First the measurement vectors C =[
C(1)(x), C(2)(x)

]
have to be replaced by the transformed

vectors Ĉ = S−1C with S =
[
1 1
0 1

]
. Then we oper-

ate with matrices of the type L =
[
x 0
y 1

]
on the trans-

formed measurement vectors. Using the differential equa-
tions again we find now the general invariant:

F1(
g1 − g2

r1 − r2
,

g2 r1 − r2 g1

r1 − r2
,

b1 − b2

r1 − r2
,

b2 r1 − r2 b1

r1 − r2
)

(20)
A Maple worksheet used to derive the invariants is shown

in the appendix.

3.3. Illumination invariants

One of the most popular problems in color image process-
ing is ”color constancy”, ie. the attempt to obtain descrip-
tions of the scene content that are independent of the illu-
mination. In the case where the illumination spectra un-
der consideration define a (local) Lie group it is possible
to construct invariants that are constant under all illumi-
nation spectra in the Lie group. Space limitation does not
allow us to describe the details of this construction here
but we remark that it is possible to use Lorentz groups and
the scaling group to give the space of illumination spectra a
group theoretical structure. Both black-body and measured
daylight sequences can be described within this framework
and illumination invariants based on these methods have
been described elsewhere.

4. Conclusions

We introduced the theory of Lie transformation groups and
showed how they can be used to construct invariants for
different reflection models. We also remarked that illu-
mination invariants can be derived along the same lines.
We showed that the theory gives both, an overview over
the number of all invariants and a constructive way to find
these invariants. The main contribution of this paper is not
only the derivation of a number of (old and new) invari-
ants for color vision problems but also the demonstration
that there is a highly developed mathematical toolbox that
allows the systematical solution to find many popular and
useful invariants for color image processing. Although we
cannot give a illustration of the results here (but see [16])
we can draw some general conclusions from the results ob-
tained. Equations (5,20) show that all invariants are func-
tions of ratios of differences. These differences will usu-

ally assume small values and the invariants will therefore
be very sensitive to noise. Since we constructed all pos-
sible invariants we can conclude from the theory that all
processing based on differential invariants is sensitive to
noise and will probably require incorporation of additional
information and/or statistical evaluation of large numbers
of measurements of such invariants at different points in
the image. Furthermore, since we know the form of all
possible invariants we can construct the invariant with the
best possible performance. An example of how to con-
struct a new invariant is shown in the Maple program.
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A. A Maple example
> restart: with(PDEtools):with(linalg):

The transformation matrices
> M := matrix(2,2,[rho[1], 1-rho[1], rho[2], 1-rho[2]]):
> S := matrix(2,2,[1,1,0,1]):
> L := evalm(inverse(S)&*M&*S);

L :=
[

ρ1 − ρ2 0
ρ2 1

]
Solving the differential equations

> eq10 :=
> subs(t=0,diff(f(exp(t)*xi[1],xi[2],exp(t)*eta[1],eta[2],
> exp(t)*zeta[1],zeta[2]),t)):
> eq1 := simplify(eq10);
> eq20 :=
> subs(t=0,diff(f(xi[1],t*xi[1]+xi[2],eta[1],t*eta[1]+eta[2],zeta[1],
> t*zeta[1]+zeta[2]),t)):
> eq2 := simplify(eq20);

eq1 := D1(f )(ξ1 , ξ2 , η1 , η2 , ζ1 , ζ2 ) ξ1 + D3(f )(ξ1 , ξ2 , η1 , η2 , ζ1 , ζ2 ) η1

+ D5(f)(ξ1, ξ2, η1, η2, ζ1, ζ2) ζ1

eq2 := D2(f )(ξ1 , ξ2 , η1 , η2 , ζ1 , ζ2 ) ξ1 + D4(f )(ξ1 , ξ2 , η1 , η2 , ζ1 , ζ2 ) η1

+ D6(f)(ξ1, ξ2, η1, η2, ζ1, ζ2) ζ1

> inv0 := pdsolve({eq1,eq2},[f]);
> rgbinv :=
> map(simplify,subs(xi[1]=r[1]-r[2],xi[2]=r[2],eta[1]=g[1]-g[2],
> eta[2]=g[2],zeta[1]=b[1]-b[2],zeta[2]=b[2],inv0));
> rgbinvfun :=
> unapply(F(1/(r1-r2)*(g1-g2),(g2*r1-r2*g1)/(r1-r2),1/(r1-r2)*(b1-b2),
> (b2*r1-r2*b1)/(r1-r2)),[r1,r2,g1,g2,b1,b2]):

inv0 := {f(ξ1, ξ2, η1, η2, ζ1, ζ2) = F1(
η1

ξ1
,

η2 ξ1 − η1 ξ2

ξ1
,

ζ1

ξ1
,

ζ2 ξ1 − ζ1 ξ2

ξ1
)}

rgbinv := {f(r1 − r2, r2, g1 − g2, g2, b1 − b2, b2) =

F1(
g1 − g2

r1 − r2
,

g2 r1 − r2 g1

r1 − r2
,

b1 − b2

r1 − r2
,

b2 r1 − r2 b1

r1 − r2
)}

Test the solution
> TT := matrix(2,3,[r1,g1,b1,r2,g2,b2]):TM := matrix(2,2,[x,1-x,y,1-y]):
> SS := evalm(TM&*TT):
> map(simplify,rgbinvfun(SS[1,1],SS[2,1],SS[1,2],SS[2,2],SS[1,3],SS[2,3]));

F(
g1 − g2
r1 − r2

,
g2 r1 − r2 g1

r1 − r2
,

b1 − b2
r1 − r2

,
b2 r1 − r2 b1

r1 − r2
)

Example to show how to construct a new invariant:
> ifun1 := (r1,r2,g1,g2,b1,b2)->1/(r1-r2)*(g1-g2):
> ifun2 := (r1,r2,g1,g2,b1,b2)->(g2*r1-r2*g1)/(r1-r2):
> ifun3 := (r1,r2,g1,g2,b1,b2)->1/(r1-r2)*(b1-b2):
> ifun4 := (r1,r2,g1,g2,b1,b2)->(b2*r1-r2*b1)/(r1-r2):
> simplify(ifun2(r1,r2,g1,g2,b1,b2)*ifun3(r1,r2,g1,g2,b1,b2)-ifun4(r1,r
> 2,g1,g2,b1,b2)*ifun1(r1,r2,g1,g2,b1,b2));

g2 b1 − b2 g1
r1 − r2
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