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Abstract
In this paper we propose a new device and illumination
invariant image representation based on an existing grey-
scale image enhancement technique: histogram equalisa-
tion. Our method is based on the premise that the rank or-
dering of sensor responses is preserved across a change in
imaging conditions (lighting or device). We set out the the-
oretical conditions under which this premise is true and we
present empirical evidence which demonstrates that rank
ordering is maintained in practice for a wide range of il-
luminants and imaging devices. We then show how we
can exploit this rank invariance using histogram equalisa-
tion to derive an invariant image representation. Device
and illuminant invariance are important in many imaging
applications and in this paper we demonstrate the practical
benefits of our new method in one such situation: the prob-
lem of image retrieval. We show that using the new invari-
ant image representation to index into a database of images
taken with a variety of devices under different lights pro-
vides very good indexing performance across all imaging
conditions.

1. Introduction

Colour (RGB) images provide information which can po-
tentially help in solving a wide range of imaging prob-
lems. For example it has been demonstrated [15, 12, 1] that
characterising an image by the distribution of its colours
(RGBs) is an effective way to locate images with simi-
lar content from amongst a diverse database of images.
Colour has also been found to be useful for tasks such as
image segmentation and object tracking. Using colour in
this way makes the implicit assumption that the colours
recorded by devices are an inherent property of the imaged
objects and thus a reliable cue to their identity. In fact,
RGBs recorded by any imaging device are a measure of
the light reflected from the surface of an object and so de-
pend in equal measure on both the surface properties of the

imaged objects and the light under which they are illumi-
nanted. So, an object which is lit by an illuminant which is
itself reddish will be recorded by a camera as more red than
will the same object lit under a more bluish illuminant. In
addition image colour also depends on the properties of the
recording device. Importantly, different imaging devices
have different sensors which implies that an object which
produces a given RGB response in one camera might well
produce a quite different response in a different device.

To overcome these problems researchers have sought
modified image representations such that one or more of
these dependencies are removed. Until now research has
concentrated on accounting for only illumination depen-
dence and proposed algorithms can be classified as either
colour invariant [10, 9, 5, 6, 14] or colour constancy algo-
rithms [11, 8]. Colour constancy algorithms, which seek
to recover a true estimate of object colour can be practi-
cally useful given simple imaging conditions and a well
characterised imaging device [11]. There do exist algo-
rithms which operate without knowledge of the imaging
device but it has been shown [8] they do not provide a
good enough estimate of object colour to be practically
useful. Colour invariant methods seek new features, al-
gebraic transforms of the original image which are illumi-
nant invariant. While often simpler than colour constancy
methods they also suffer from the fact they do not yet pro-
vide sufficient invariance to be practically useful [3]. Fur-
thermore, neither approach addresses the issue of device
invariance.

In this paper we present a new invariant image repre-
sentation which addresses some of the weaknesses of pre-
vious work. In particular the method we present is both
illumination independent and (in many cases) also device
independent. Our method is based on the observation that
while a change in illumination or device leads to signifi-
cant changes in the recorded RGBs, the rank orderings of
the responses of a given sensor are largely preserved. In
fact, we show in this paper (§3� that under certain sim-
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plifying assumptions invariance of rank ordering follows
directly from the image formation equation. In addition
we present an empirical study (§4) which reveals that the
preservation of rank ordering holds in practice both across
a wide range of illuminants and a variety of imaging de-
vices. Thus, an image representation which is based on
rank ordering of recorded RGBs rather than on the RGBs
themselves offers the possibility of accounting for both il-
lumination and device dependence at the same time.

To derive an image representation which depends only
on rank orderings we borrow a tool which has long been
used by the image processing community for a quite dif-
ferent purpose. The technique is histogram equalisation
which is typically applied to grey-scale images to produce
an “enhanced” image. But in a departure from traditional
image processing practice we apply the procedure not to
a grey-scale image, but rather to each of the R, G, and B
channels of a colour image independently of one another.
We show that provided two images differ in such a way
as to preserve the rank ordering of pixel values in each of
the three channels then an application of histogram equal-
isation to each of the channels of the two images results
in a pair of equivalent images. Thus provided a change in
illuminant or device preserves rank ordering of pixel re-
sponses the application of histogram equalisation will pro-
vide us with an invariant representation of a scene which
might subsequently be of use in a range of imaging appli-
cations.

Of course the reader may be surprised that we propose
something so simple: histogram equalisation is a common
tool. Paradoxically however, histogram equalising R, G,
and B channels of an image is generally discouraged be-
cause this results in unnatural pseudo-colours. In the con-
text of many imaging applications however, such pseudo-
colours suffice since we are not interested in viewing the
image but rather in extracting useful information from it.
We demonstrate that the method does indeed recover use-
ful information by applying it to the problem of image re-
trieval (§5�. We show that the method out performs all
previous approaches providing very good indexing across
devices and close to perfect indexing across a change in
illumination.

2. Background

We begin by adopting a simple model of image formation
in which a scene is illuminated by a single light charac-
terised by its spectral power distribution which we denote
E�λ� and which specifies how much energy the source
emits at each wavelength (λ) of the electromagnetic spec-
trum. A surface in the scene is characterised by its spec-
tral reflectance function S�λ� which defines what propor-
tion of light incident upon it the surface reflects on a per-

wavelength basis. We assume that the light reflected from
the scene is sampled by a 2-d array of sensors at the imag-
ing device (a camera, or the eye) and that each sensor
is characterised by Rk�λ�, its spectral sensitivity function
which specifies how much light energy it absorbs at each
wavelength of the spectrum. We assume that light from
each point in the scene is sampled by three different classes
of sensor (k � 1�2�3� and the response of each sensor is
given by:

pk �

Z
ω

E�λ�S�λ�Rk�λ�dλ� k � 1� � � � �3 �1�

where the integral is taken over the range of wavelengths
ω: the range for which the sensor has non-zero sensitivity.
Thus an imaging device’s response to light from a point in
the scene is given by the triplet �p1� p2� p3� which we also
refer to in this paper as R�G� and B or just RGB. An im-
age is thus a collection of RGBs representing the device’s
response to light from a range positions in the scene.

Equation (1) makes clear the fact that a device response
depends both on properties of the sensor (it depends on
Rk�λ� and also on the prevailing illumination (on E�λ�).
That is, responses are both device and illumination depen-
dent. It follows that if no account is taken of these de-
pendencies, an RGB cannot correctly considered to be an
intrinsic property of an object.

To deal with the problem of illumination dependence
we could attempt to estimate the illumination (E�λ�) and
subsequently correct recorded RGBs to render responses
colour constant: i.e. stable across a change in illumination.
In practice estimating the scene illuminant is non-trivial
and Funt et al [8] demonstrated that no colour constancy
algorithm is sufficiently accurate to make such an approach
useful in practical applications. More recent work [11]
has shown that for simple imaging conditions and given
good device calibration the colour constancy approach can
work but unfortunately well calibrated devices are often
not available.

A different approach is to derive from the image data
some new representation (feature) of the image which is
invariant to illumination. Such approaches are classified
as colour (or illuminant) invariant approaches and many
invariant features have been proposed [9, 5, 10, 14]. It is
clear from Equation (1), that the interaction between light,
surface and sensor is complex and invariant representa-
tions are formulated on the basis of further simplifications
to this equation. A common approach is to adopt the so
called diagonal model of illumination change in which it
is proposed that sensor responses under a pair of illumi-
nants are related by a diagonal matrix transform:

�
� Rc

Gc

Bc

�
A�

�
� α 0 0

0 β 0
0 0 γ

�
A
�
� Ro

Go

Bo

�
A �2�
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where the superscripts o and c characterise the pair of il-
luminants. The model is widely used, and has been shown
to be well justified under many conditions [7]. Adopting
such a model one simple illuminant invariant representa-
tion of an image can be derived by applying the following
transform:

R� �
R

Rave
� G� �

G
Gave

� B� �
B

Bave
�3�

where the triplet �Rave�Gave�Bave� denotes the mean of all
RGBs in an image. It is easy to show that this so called
Greyworld representation of an image is illumination in-
variant provided that Equation (2) holds.

Many other illuminant invariant representations have
been derived, in some cases [10] by adopting different
models of image formation. All derived invariants how-
ever share two common failings: first it has been demon-
strated that when applied to the practical problem of image
retrieval [3] none of these invariants affords good enough
performance across a change in illumination. Secondly,
none of these approaches considers the issue of device in-
variance.

Variation across devices occurs because different de-
vices have different spectral sensitivity functions (different
Rk in Equation (1)) and also because the colours recorded
by a device are often not linearly related to scene radiance
as Equation (1) suggests, but rather are some non-linear
transform of this:

pk � f

�Z
ω

E�λ�S�λ�Rk�λ�dλ
�
� k � 1� � � � �3 �4�

The transform f �� is deliberately applied to RGB values
recorded by a device for a number of reasons. First, many
captured images will eventually be displayed on a monitor.
Importantly colours displayed on a screen are not a linear
function of the RGBs sent to the monitor. Rather, there
exists a power function relationship between the incom-
ing voltage and the displayed intensity. This relationship
is known as the gamma of the monitor, where gamma de-
scribes the exponent of the power function [13]. To com-
pensate for this gamma function images are usually stored
in a way that reverses the effect of this transformation:
that is by applying a power function with exponent of 1�γ,
where γ describes the gamma of the monitor, to the im-
age RGBs. Unfortunately monitor gammas are not unique
and so images from two different devices will not neces-
sarily have the same gamma correction applied. In addi-
tion to gamma correction other more general non-linear
“tone curve” corrections are often applied to images so as
to change image contrast with the intention of creating a
visually more pleasing image. Such transformations are
device, and quite often, image dependent. How then are
we to deal with these problems? In the next section we

provide a first step in answering this question by demon-
strating that while RGBs themselves change across device
and illumination, the relative ordering of these responses
remains fixed.

3. Rank Invariance of Sensor Responses

Let us consider again the diagonal model of illumination
change defined by Equation (2). We observe that one im-
plication of this model is that the rank ordering of sensor
responses is preserved under a change of illumination. To
see this, consider the responses to a single sensor R, such
that Ro

i represents the response to a surface i under an il-
luminant o. Under a second illuminant, which we denote
c, the surface will have response Rc

i and the pair of sensor
responses are related by:

Rc
i � αRo

i �5�

Equation (5) is true for all surfaces (that is, � i). Now, con-
sider a pair of surfaces, i and j, viewed under illuminant
o and suppose that Ro

i � Ro
j , then it follows from Equa-

tion (5) that:

Ro
i � Ro

j � αRo
i � αRo

j � Rc
i � Rc

j � i� j� � α � 0 �6�

That is, the rank ordering of sensor responses within a
given channel is invariant to a change in illumination.

Next, consider the more general model of image forma-
tion (Equation (4)) in which sensor responses are allowed
to undergo a possibly non-linear transformation. Rank or-
dering is also preserved in this case for a certain class of
functions f ��. Specifically, rank ordering is preserved pro-
vided that f �� is a monotonic increasing function. Impor-
tantly many of the transformations such as gamma or tone-
curve corrections which are applied to images, satisfy this
condition of monotonicity and are thus rank invariant. For
example power (gamma) function transformations are rank
invariant since:

Ri � R j � �Ri�
γ � �R j�

γ
� γ � 0 �7�

It makes sense that tone-curve corrections applied to im-
ages should also be monotonic (and thus rank invariant)
since such corrections are essentially mappings from input
pixel values to output values. If this mapping is not mono-
tonic then it can happen that two quite different input pixel
values are mapped to the same output value.

This analysis is not fully general: it is possible given
what we have said so far, that the responses from two de-
vices whose spectral sensitivities are quite different might
have a different ordering of responses. We investigate this
point further in the next section with an empirical analysis
of data from a wide class of imaging devices.
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3.1. Rank Invariance in Practice

To assess rank ordering invariance we conducted an ex-
periment similar to that of Dannemiller [2] who investi-
gated the invariance of human cone cells under a change
in illumination. He found that to a very good approxima-
tion rank orderings were maintained. Here, we investigate
both a change in illumination and device. To investigate
the invariance of rank orderings of sensor responses for a
single device under changing illumination we proceed as
follows. Let Rk represent the spectral sensitivity of the kth
sensor of the device we wish to investigate. Now suppose
we calculate (according to Equation (1)) the responses of
this sensor to a set of surface reflectance functions under
a fixed illuminant E1�λ�. We denote those responses by
the vector P1

k . Similarly we denote by P2
k the responses of

the same sensor to the same surfaces viewed under a sec-
ond illuminant E2�λ�. Next we define a function rank��
which takes a vector argument and returns a vector whose
elements contain the rank of the corresponding element in
the argument. Then, if sensor responses are invariant to
the illuminants E1 and E2, the following relationship must
hold:

rank
�
P1

k

�
� rank

�
P2

k

�
�8�

In practice the relationship in Equation (8) will hold only
approximately and we can assess how well the relation-
ship holds using Spearman’s Rank Correlation coefficient
which is given by:

ρ � 1�6
N

∑
j�1

d2
j

Ns�N2
s �1�

�9�

where d j is the difference between the jth elements of
rank

�
P1

k

�
and rank

�
P2

k

�
and Ns is the number of surfaces.

This coefficient takes a value between -1 and 1: a coef-
ficient of zero implies that Equation (8) holds not at all,
while a value of one will be obtained when the relation-
ship is exact. Invariance of rank ordering across devices
can be assessed in a similar way by defining two vectors:
P1

k defined as above and Q1
k representing sensor responses

of the kth sensor of a second device under the illuminant
E1. By substituting these vectors in Equation (9) we can
measure the degree of rank correlation. Finally we can
investigate rank order invariance across device and illumi-
nation together by comparing, for example, the vectors P2

k
and Q1

k .
We conducted such an analysis for a variety of imag-

ing devices and illuminants, taking as our set of surfaces,
a set of 462 Munsell chips [17]. We analysed 16 different
lights, including a range of daylight illuminants, Planckian
blackbody radiators, and fluorescent lights. For devices we
used the spectral sensitivities of the human colour match-
ing functions [17] as well as four digital still cameras and
a flatbed scanner. Table 1 summarises the results for three

1st Sensor 2nd Sensor 3rd Sensor

Across Illumination

CMFs 0.9957 0.9922 0.9992
Cam 1 0.9983 0.9984 0.9974
Cam 2 0.9978 0.9938 0.9933
Cam 3 0.9979 0.9984 0.9972
Cam 4 0.9981 0.9991 0.9994
Scanner 0.9975 0.9989 0.9995

Across Devices

D65 0.9877 0.9934 0.9831
cwf 0.9931 0.9900 0.9710
A 0.9936 0.9814 0.9640

Across Device and Illuminant

0.9901 0.9886 0.9774

Table 1: Spearman’s Rank Correlation Coefficient for each sen-
sor of a range of devices. Results are averaged over all pairs of
a set of 16 illuminants.

conditions: the first 5 rows correspond to the case in which
sensor is fixed and illumination is allowed to change, the
next three to the case in which illumination is fixed and de-
vice is changed, and the last row to the case in which both
illumination and device change together. using the mea-
sure defined by Equation (9). Rank correlation is shown
for each device averaged over all 16 illuminants (case 1),
for three illuminants (daylight, fluorescent, and tungsten)
averaged over all devices (case 2), and for all devices and
illuminants (case 3). In all cases, the results show a very
high degree of correlation: average correlation never falls
below 0.964 which represents a high degree of correlation.
Minimum correlation over all devices and illuminants was
0.9303 for the 1st sensor, 0.9206, for the 2nd sensor and
0.8525 for the 3rd. Thus on the basis of these results we
conclude that rank orderings are preserved to a very good
approximation across a change in either or both, device
and illumination. It remains to determine how we are to
exploit this rank invariance in practice: this we discuss in
the next section.

4. Exploiting Invariance: Histogram
Equalisation

There are a number of ways we might employ rank or-
dering information to derive an invariant representation,
we set forth one such method here which we will demon-
strate has a number of interesting properties. To under-
stand our method consider a single channel of an RGB im-
age recorded under an illuminant o where without loss of
generality we restrict the range of Ro to be on some finite
interval: Ro � �0 � � �Rmax�. Now, consider further a value
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Ro
i � �0 � � �Rmax� where Ro

i is not necessarily the value of
any pixel in the image. Let us define by P�Ro � Ro

i �, the
number of pixels in an image with a value less than or
equal to Ro

i . Under a second illuminant, c, a pixel value
Ro under illuminant o is mapped to a corresponding value
Rc. We denote by P�Rc � Rc

i � the number of pixel values
in the second image whose value is less than Rc

i . Assum-
ing that the illumination change preserves rank ordering of
pixels we have the following relation:

P�Rc � Rc
i � � P�Ro � Ro

i � �10�

That is, a change in illumination preserves cumulative pro-
portions. Given this we define one channel of the invariant
image representation thus:

Rinv
i �

Rmax

Npix
P�Ro � Ro

i � �
Rmax

Npix
P�Rc � Rc

i � �11�

where Npix is the number of pixels and the constant Rmax
Npix

ensures that the invariant image has the same range of val-
ues as the input image. Repeating the procedure for each
channel of a colour image results in the required invariant
image.

The reader familiar with the image processing literature
might recognise Equation (11). Indeed this transformation
of image data is one of the simplest and most widely used
methods for image enhancement and is commonly known
as histogram equalisation. Histogram equalisation is an
image enhancement technique originally developed for a
single channel, or grey-scale, image. The aim is to increase
the overall contrast in the image since doing so typical
brightens dark areas of an image, increasing the detail in
those regions which in turn can sometimes result in a more
pleasing image. This aim is achieved by transforming an
image such that the histogram of the transformed image
is as close as possible to a uniform histogram. The ap-
proach is justified on the grounds that amongst all possible
histograms, a uniformly distributed histogram has maxi-
mum entropy. Maximising the entropy of a distribution
maximises its information and thus histogram equalising
an image maximises the information content of the output
image. Accepting the theory, to histogram equalise an im-
age we must transform the image such that the resulting
image histogram is uniform. Now, suppose that xi repre-
sents a pixel value in the original image and xt

i its corre-
sponding value in the transformed image. Let us further
assume that xi and xt

i are continuous variables and let us
denote by p�x� and pt�xt� the probability density functions
of the original and transformed image. We would like to
transform the original image such that the proportion of
pixels less than x�

i in the transformed image is equal to the
proportion of image pixels less than xi in the original im-
age, and that moreover the histogram of the output image

is uniform. This implies:

Z xi

0
p�x�dx �

Z xt
i

0
pt�x

t�dxt �
Npix

xmax

Z xt
i

0
dxt �12�

Evaluating the right-hand integral we obtain and re-
arranging terms we have:

xt
i �

xmax

Npix

Z xi

0
p�x�dx �13�

Equation (13) tells us that to histogram equalise an image
we transform pixel values such that a value xi in the orig-
inal image is replaced by the proportion of pixels in the
original image which are less than or equal to xi. A com-
parison of Equation (11) and Equation (13) reveals that,
disregarding notation, they are the same. So, the invari-
ant image is obtained by simply histogram equalising each
of the channels of our original image. In practice, applying
the histogram equalisation procedure to an image results in
a transformed image whose resulting histogram is only ap-
proximately uniform. This is because the range of values
a pixel can take is discrete not continuous as we assumed
in the analysis above.

In the context of image enhancement it is argued [16]
that applying an equalisation to the channels of a colour
image separately is inappropriate since this can produce
significant colour shifts in the transformed image. But in
our context we are interested not in the visual quality of
the image but in obtaining a representation which is il-
luminant and/or device invariant. Histogram equalisation
achieves just this provided that the rank ordering of sensor
responses is itself invariant to such changes.

5. An Application to Colour Indexing

To test the invariance properties of histogram equalisation
we applied the method to an image retrieval task. Fin-
layson et al [3] recently found that existing invariant ap-
proaches were unable to facilitate good enough image in-
dexing across a change in either, or both illumination and
device. Here we repeat their experiment but using his-
togram equalised images as our basis for indexing to in-
vestigate what improvement, if any, the method brings.

The experiment is based on a database of images of
coloured textures captured under a range of illuminants
and devices and described in [4]. In summary there are 28
different coloured textures each captured under six differ-
ent devices (4 cameras and 2 scanners). In addition each
camera was used to capture each of the textures under 3
different lights so that in total there are �3�4�2��28�
392 images. In image indexing terms this is a relatively
small database and it is chosen because it allows us to in-
vestigate performance across a change in illumination and
device. In our experiment we tested indexing performance
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Model Case (1) Case (2) Case (3)
RGB 63.23 71.85 65.53
Greyworld 93.96 94.22 92.28
Hist Eq. 96.72 95.52 94.54

Table 2: Average Match Percentile results of the indexing experi-
ment for four different cases: (1) Across illumination, (2) Across
cameras, (3) Across all devices and illumination.

across three different conditions: (1) across illumination,
(2) across homogeneous devices (across cameras), and (3)
across both devices and illumination. In each case the ex-
perimental procedure was as follows. First, we choose a
set of 28 images all captured under the same conditions
(same device and illuminant) to be our image database.
Next we select from the remaining set of images a subset
of appropriate query images. So, if we were testing perfor-
mance across illumination, we selected as query images
the 56 images captured by the device corresponding to the
database images, under the two non-database illuminants.
Then, for all database and query images we derived an
invariant image using the histogram equalisation method.
We then represented the invariant image by its colour dis-
tribution: that is, by a histogram of the pixel values in the
invariant image. All results reported here are based on 3-
dimensional histograms of dimension 16�16�16.

Indexing is performed for a query image by comparing
its histogram to each of the histograms of the database im-
ages. The database image whose histogram is most sim-
ilar to the query histogram is retrieved as a match to the
query image. We compare histograms using the intersec-
tion method described by Swain et al [15] which we found
to give the best results on average. Indexing performance
is measured using average match percentile [15] which
gives a value between 0 and 100%. A value of 99% implies
that the correct image is ranked amongst the top 1% of im-
ages whilst a value of 50% corresponds to the performance
we would achieve using random matching. Table 2 sum-
marises the average match percentile results for the three
different conditions. In addition to results for histogram
equalisation we also show results based on histograms of
the original images (RGB), and on Grey-world normalised
images (the best performing invariant representation in the
original experiment [3]). Significantly, histogram equal-
isation outperforms Grey-world for all conditions. His-
togram equalisation results across a change in illumination
are very good: an AMP of close to 97% as compared to
94% for Grey-world. In absolute terms results for match-
ing across devices (Case (2)) and across device and illumi-
nant (Case 3) are less good. However, histogram equalisa-
tion still performs significantly better than Grey-world.

These results are good in the sense that they show the

new method to outperform previous invariant approaches
but they also raise a number of issues worthy of further
comment. First, it is surprising that one of the simplest in-
variants – Grey-world – performs as well as it does, whilst
other more sophisticated invariants (evaluated in the origi-
nal experiment [3]) perform very poorly. This performance
indicates that for this dataset a diagonal scaling of sen-
sor responses accounts for most of the change that occurs
when illuminant or device is changed. It also suggests that
any non-linear transform applied to the device responses
post-capture must be very similar for all devices: most
likely a simple power function is applied. Secondly, given
the analysis in § 3.1 we might have expected that histogram
equalisation would have performed somewhat better than it
does. Possible reasons for this imperfect performance can
be found by an examination of the images which make up
the database. In addition to differences due to device and
illumination, images in the database also differ spatially:
i.e. the illumination varies spatially across the extent of
an image and this spatial variation differs from image to
image. Images of the same scene under a constant and
spatially varying illuminant do not look the same after his-
togram equalisation. We are currently investigating how
this spatial aspect of illumination can be dealt with. Ad-
ditional analysis of the indexing results also revealed that
poor performance was restricted to a small number of im-
ages. An inspection of these images revealed a number of
artifacts of the imaging process. Specifically a number of
images captured under tungsten illumination have values
of zero in the blue channel for many pixels. Further, some
images with uniform backgrounds were found to have sig-
nificant non-uniformities in these regions when captured
with the scanners. In both cases the resulting histogram
equalised images are far from invariant. Excluding these
images leads to a significant improvement in indexing per-
formance. However, for an invariant image representation
to be of practical use in an uncalibrated environment it
must be robust to the limitations of the imaging process.
Thus we have reported results including all images. Fur-
ther testing on more diverse and larger images databases is
required to properly determine the power of this method as
compared to other invariant approaches.

6. Conclusions

We have shown in this paper that under certain theoretical
conditions the rank orderings of sensor responses are in-
variant both to a change in illumination and to a change
in imaging device. We exploited this fact using the tech-
nique of histogram equalisation to derive a novel image
representation which is, in theory, both device and illumi-
nant invariant. We have demonstrated that in practice only
quasi-invariance is achieved using this method but we have
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shown that the degree of invariance is sufficient to be of
practical use in a set of image indexing experiments using
images captured under a range of different lights with a
number of different imaging devices.

References
[1] J. Bach, C. Fuller, A. Gupta, A. Hampapur, B. Horowitz,

R. Humphrey, and R. Jain. The virage image search engine: An
open framework for image management. In SPIE Conf. on Storage
and Retrieval for Image and Video Databases, volume 2670, pages
76–87, 1996.

[2] James L. Dannemiller. Rank orderings of photoreceptor photon
catches from natural objects are nearly illuminant-invariant. Vision
Research, 33(1):131–140, 1993.

[3] G. Finlayson and G. Schaefer. Colour indexing arcoss devices and
viewing conditions. In 2nd International Workshop on Content-
Based Multimedia Indexing, 2001.

[4] G. Finlayson, G. Schaefer, and G. Y. Tian. The UEA uncalibrated
colour image database. Technical Report SYS-C00-07, School of
Information Systems, University of East Anglia, Norwich, United
Kingdom, 2000.

[5] G.D. Finlayson, S.S. Chatterjee, and B.V. Funt. Color angular in-
dexing. In The Fourth European Conference on Computer Vision
(Vol II), pages 16–27. European Vision Society, 1996.

[6] G.D. Finlayson, B. Schiele, and J. Crowley. Comprehensive colour
image normalization. In eccv98, pages 475–490, 1998.

[7] Graham Finlayson. Coefficient Colour Constancy. PhD thesis, Si-
mon Fraser University, 1995.

[8] Brian Funt, Kobus Barnard, and Lindsay Martin. Is machine colour
constancy good enough? In 5th European Conference on Computer
Vision, pages 455–459. Springer, June 1998.

[9] Brian V. Funt and Graham D. Finlayson. Color Constant Color
Indexing. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 17(5):522–529, 1995.

[10] T. Gevers and A.W.M. Smeulders. Color based object recognition.
Pattern Recognition, 32:453–464, 1999.

[11] Graham. D. Finlayson, Steven Hordley, and Paul Hubel. Illuminant
estimation for object recognition. COLOR research and applica-
tion, 2002. to appear.

[12] W. Niblack and R. Barber. The QBIC project: Querying images by
content using color, texture and shape. In Storage and Retrieval for
Image and Video Databases I, volume 1908 of SPIE Proceedings
Series. 1993.

[13] C. Poynton. The rehabilitation of gamma. In SPIE Conf. Human
Vision and Electronic Imaging III, volume 3299, pages 232–249,
1998.

[14] M. Stricker and M. Orengo. Similarity of color images. In SPIE
Conf. on Storage and Retrieval for Image and Video Databases III,
volume 2420, pages 381–392, 1995.

[15] Michael J. Swain and Dana H. Ballard. Color Indexing. Interna-
tional Journal of Computer Vision, 7(1):11–32, 1991.

[16] Alan Watt and Fabio Policarpo. The Computer Image. Addison-
Wesley, 1997.

[17] G. Wyszecki and W.S. Stiles. Color Science: Concepts and Meth-
ods, Quantitative Data and Formulas. New York:Wiley, 2nd edi-
tion, 1982.

IS&T/SID Eleventh Color Imaging Conference

211




