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Abstract 

One approach to camera characterization is to attempt to 
recover the spectral properties of the surfaces in a scene and 
then compute the tristimulus values from these estimated 
reflectances. This paper addresses the question of whether 
such spectral-based characterization methods can 
outperform traditional characterization methods. In this 
paper we have evaluated three different techniques for 
camera characterization that employ multispectral methods. 
The Imai and Berns method and the Hardeberg method are 
based on the use of a linear model of reflectance with three 
basis functions whereas the Shi and Healey method allows 
the use of a higher dimensional linear model. The 
characterization performance (median ∆E) of the techniques 
using the full set training samples was found to be 3.69, 4.26 
and 3.55 respectively for the Imai and Berns method, the 
Hardeberg method and the Shi and Healey method. In a 
previous study we found that polynomial and neural-network 
methods are able to perform characterization on the same 
data with a median ∆E of 2.02 and 2.01 respectively. We 
find no evidence, therefore, that multispectral imaging 
techniques provide any advantage over traditional 
characterization methods for a three-channel camera 
imaging under a single illuminant. Further work is required 
to evaluate multispectral techniques for multiple imaging 
under more than one light source and for cameras with more 
than three color channels. 

Introduction 

Traditional imaging systems such as digital RGB cameras 
capture device- and illuminant-dependent images. That is, 
the RGB values that the camera measures are specific to that 
camera (device). Several methods exist1-4 that enable camera 
RGB data to be transformed into device-independent CIE 
XYZ data. However, this effectively converts the color 
camera into a spatial colorimeter and the XYZ values are still 
illuminant-dependent. This dependency can be a serious 
problem, especially since the spectral sensitivities of most 
commercial color cameras are not identical to (or a linear 
transform of) the human spectral sensitivities or the CIE 
color-matching functions. Thus two surfaces with differing 
spectral reflectance factors can result in identical RGB 
responses (and thus identical XYZ values when transformed) 

and yet may have different XYZ values to each other when 
measured using a spectrophotometer or colorimeter that 
utilizes the CIE color-matching functions. Recently, many 
researchers5,6 have suggested multispectral imaging as a 
means of addressing this problem. In a multispectral 
imaging system, the responses of a number of color channels 
(usually more than three) are used to attempt to recover 
spectral information about surfaces that are imaged. If 
successful this would effectively convert the color camera 
into a spatial spectrophotometer and would ultimately enable 
the measurement of device- and illuminant-independent 
images. Such a system is possible with relatively few color 
channels because the spectral properties of most surfaces are 
relatively smooth functions of wavelength.7 A possible 
device-characterization method is to try to recover the 
spectral properties of the surfaces in the scene and then 
compute the tristimulus values from these estimated 
reflectances.8 This paper addresses the question of whether 
such spectral-based characterization methods can 
outperform traditional characterization methods. Three 
multispectral methods are evaluated. 

Multispectral Imaging Techniques 

The idea underpinning spectral-based device 
characterization is that once the spectral reflectance factors 
have been estimated the computation of tristimulus values is 
trivial. Therefore characterization based upon multispectral 
imaging is a two-stage process: firstly, the camera responses 
are used to estimate the reflectance values, and secondly, the 
tristimulus values are computed. In this section we describe 
three methods for multispectral imaging that are evaluated in 
this paper. These methods are discussed in terms of a 
trichromatic imaging system because the focus of this paper 
is the characterization of typical consumer imaging devices 
though they all can be extended for use with cameras with 
more than three channels. 

 The method developed by Hardeberg assumes that the 
reflectance spectra are adequately represented by a three-
dimensional linear model and that the illuminant and camera 
sensor characteristics are known.9 The camera response R 
for a channel is shown in Equation 1, 

R = ΣE(λ)S(λ)P(λ),    (1) 
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where E(λ) is the spectral power distribution of the 
illuminant, S(λ) is the channel spectral sensitivity and P(λ) 
is the surface spectral reflectance at each wavelength 
interval λ. The reflectance P in Equation 1 can be replaced 
with a weighted sum of basis functions derived from a linear 
model. If Vi(λ) represents the first three basis functions (i ∈ 
{1, 2, 3}) from the linear model and wi are the weights that 
represent a particular spectrum P, then we can write, 
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The known quantities can be grouped together to yield 
Equation 3, 

 

Ti = ΣE(λ)S(λ)Vi(λ),       (3)  

If Equation 2 is considered for all three camera channels it 
can be rewritten as a linear matrix equation, thus 

 
R = Tw      (4) 

 
where R is a 3 × 1 matrix of camera responses, T is a 3 × 3 
matrix (see Equation 3), and w is a 3 × 1 matrix of weights. 
Equation 4 can be solved for w thus, 

 
w = T-1R,     (5) 

 
where T-1 represents the inverse of the matrix T. We note 
that Finlayson refers to T as the lighting matrix.8 

The Hardeberg method requires that the camera spectral 
sensitivities and the spectral power distribution of the 
illuminant are known so that, with a knowledge of the basis 
functions, the lighting matrix may be defined. However, the 
method proposed by Imai and Berns does not require the 
spectral properties of the channels and illumination to be 
known but rather assumes a linear relationship between the 
camera responses and the weights that represent reflectance 
spectra in a linear model.10 Consider a set of 
characterization target with m known spectral reflectances 
that are represented in a linear model by w (so that w is a 3 
× m matrix) and the corresponding camera responses R (a 3 
× m matrix). Imai and Berns simply write that R and w are 
related thus, 
 

R = Tw,      (6) 
 

where T is a 3 × 3 matrix that can be determined empirically 
via a least-squares fit. Specifically, we can compute T using 
  

T = wR-1.     (7) 
       

Shi and Healey examined a higher-dimensional linear model 
for characterizing a three-channel color scanner to generate 
device-independent values from scanner responses.11 Since 
spectral reflectance functions typically require a linear 
model with more than three degrees of freedom for accurate 

representation, an approach to characterization that allows 
incorporation of high-dimensional models is worth 
exploring. Consider a set of characterization target with 
known spectral reflectances P and known camera responses 
R. A minimization process is carried out to find the P that is 
most similar in Euclidean distance to a training spectral 
reflectance vector for a given R. For a given training 
spectral reflectance vector Pi, the element P* that minimizes 
||P* - Pi|| is the solution of a linear least-squares problem and 
is given by: 

 
P* = V1(w1

*)T + V2(SV2)
-1[R – SV1(w1

*)T]  (8) 
  
In this equation, V1 and V2 denote the fourth to n and 

the first three basis functions respectively and w1 is the set 
of weights for the fourth to n basis functions for Pi. The 
effective spectral sensitivity channels of the camera is 
represented by S. 

Experimental 

An Agfa digital StudioCam camera, a three-chip CCD 
device with 8-bit resolution for each channel and 4500 × 
3648 pixel spatial resolution, was used in this study. During 
the experiment the automatic white-balance setting was 
disabled. Two imaging targets, the Macbeth ColorChecker 
DC chart and the Macbeth ColorChecker chart, were used 
for characterization. The spectral reflectance factors of the 
patches on the two charts were measured using a Macbeth 
ColorEye 7000A reflectance spectrophotometer. The 
imaging system consisted of two gas-filled tungsten lamps 
arranged approximately in a 0/45 illumination/viewing 
geometry. A Minolta CS1000 spectroradiometer was used 
for the measurement of illuminant spectral power 
distribution.  

Linearization and Spatial Correction 

The linearization and spatial-correction method described 
below are based upon a method described by Sun and 
Fairchild.12 The camera RGB responses were measured for a 
series of Munsell grey chips (N6/ to N9/ at intervals of 0.5 
value), an NCS uniform white paper, and the dark condition 
(with the camera lens cap in place) to allow a gamma 
correction for the camera. This converted the raw camera 
responses to values that were linearly related to the camera 
input4. During the experiment, the camera and lighting 
positions were fixed, and the RGB values of the Munsell 
grey chips were measured with each chip in turn in the 
centre of the camera’s field of view. Each patch generated 
an image region of about 40 × 60 pixels but the values of a 
central sub-region (11 × 11 pixels) were averaged to 
generate the mean RGB values for that patch. For each 
camera channel, the camera responses for each grey patch 
were plotted against the mean reflectance of each patch and 
the relationship was fitted using a second-order polynomial. 
A polynomial relationship was established for each channel 
and then all subsequent camera responses were linearized 
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using these relationships before further processing. Thus, for 
the green channel,  

 
G' = aG+ bGG + cGG2    (9) 

 
where G is the raw camera response and G' is the linearized 
response for the green channel. 

Spatial correction was also performed to minimize the 
effect of any spatial non-uniformity of the intensity of the 
illumination or of the sensitivity of the camera CCD. For 
example, for the green channel, Equation 10 was used to 
convert the linearized channel response G' to the spatially 
corrected value GS at each pixel position, thus 
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where GW and GB are the mean linearized channel values for 
the uniform white and black (dark) samples respectively. 
Similar equations were used to obtain the spatially corrected 
values for the red and blue channels.  

Training/Testing Protocol 

A total of 192 patches in the Macbeth ColorChecker DC 
chart and the 24 patches of the Macbeth ColorChecker chart 
were used as training and testing sets respectively. These 
two characterization stimuli were used for memorization and 
generalization tests. Memorization represents the ability of a 
system to back-predict the training data that were used to 
determine the system. Generalization represents the ability 
of a system to predict testing data that were not used to 
develop the system and this is a more critical test of the 
characterization models. Smaller training sets were derived 
by randomly sub-sampling the 192 patches to generate 
training sets containing 160, 130, 100, 70 and 40 samples. 

Implementation of Algorithms 

CIE tristimulus values were computed for the patches using 
the 1964 CIE observer data and the illuminant data 
measured for the light source. Color errors between 
measured and estimated samples of each training size are 
presented in CIELAB color difference (∆E*

ab) values. When 
a sub-set of less than 192 training samples was used the sub-
set was randomly selected five times and the mean error 
score computed. All computations were performed in 
MATLAB programming environment. The camera spectral 
sensitivities were estimated13 using quadratic programming 
method14 and are illustrated in Figure 1. 

The method for computing the basis functions for a set 
of reflectance spectra employs singular value decomposition 
and is provided as a single command SVDS in MATLAB. 
The basis functions used were derived based upon the 
Macbeth ColorChecker DC samples in the training set and 
are shown in Figure 2. 
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Figure 1. Estimated camera spectral sensitivities  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. First 3 basis functions of the 192 Macbeth DC 
ColorChecker training samples 

 

Results 

Figure 3 shows an example of reflectance recovery 
performance based on Imai and Berns method using one of 
the Macbeth ColorChecker surfaces. In general, most of the 
estimated reflectances are quite similar to the original ones 
but where errors occur they tend to be at the far ends of the 
spectrum. Figures 4 and 5 illustrate the characterization 
errors (median and maximum CIELAB errors respectively) 
for the Imai and Berns method. The median errors are 
almost independent of the size of the training set. However, 
as the training set size increases, the maximum training error 
increases and the maximum testing error decreases. In 
particular, as the number of training samples becomes large, 
the generalization or testing performances of the model 
returns smaller maximum errors. 
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Figure 3. Example of spectral reflectance recovery of a Macbeth 
ColorChecker sample (orange) using the Imai and Berns method 

 
Figure 4. Effect of training size on characterization performance 
(median error) using Imai and Berns method. 

 

 
Figure 5. Effect of training size on characterization performance 
(maximum error) using Imai and Berns method. 

 
Figure 6 illustrates the reflectance recovery 

performance using estimates of camera sensitivities 
(Hardeberg method) of the same Macbeth ColorChecker 
surfaces as used for Figure 3. Figures 7 and 8 show 
performance for this method and are analogous to Figures 4 
and 5. Figure 7 shows that both generalization and 
memorization errors are very stable until the training set size 
falls to about 40 samples. The maximum test error given in 
Figure 8 illustrates that the model leads to poorer 
memorization performance than generalization when the 
training set size increased from 70 samples. 

 
Figure 6. Example of spectral reflectance recovery of a Macbeth 
ColorChecker sample (orange) using the Hardeberg method 

 
Figure 7. Effect of training size on characterization performance 
(median error) using Hardeberg method. 

 
Figure 8. Effect of training size on characterization performance 
(maximum error) using Hardeberg method 

 
The results of reflectance recovery using the Hardeberg 

method are generally similar to those using the Imai and 
Berns method. The errors tend to be a little smaller for the 
Imai and Berns method, however, and one possible reason 
for this is that the estimates of the camera spectral 
sensitivities may be noisy. 

Figures 9 and 10 show the median and maximum color 
differences using the higher-dimensional model (Shi and 
Healey method). Performance using this method is generally 
better than that obtained with the Hardeberg or Imai and 
Berns method. Note that the training and testing errors are 
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reported for different numbers of basis functions in the 
linear model of reflectance. The linear model was always 
obtained using the full set of 192 training samples. 

 

 
Figure 9. Effect of number of basis functions on characterization 
performance (median error) using the Shi and Healey method. 

 
Figure 10. Effect of number of basis functions on characterization 
performance (maximum error) using the Shi and Healey method 

 
 
One likely reason why the Shi and Healey method 

performs the best is that the other two methods are based 
upon a linear model of reflectance with only three 
dimensions and there is much evidence that such a model is 
inadequate to represent the spectra of typical surfaces.7  

Discussion 

In this paper we have evaluated three different techniques 
for camera characterization that employ multispectral 
methods. The Imai and Berns method and the Hardeberg 
method are based on the use of three basis functions when 
used with a trichromatic imaging system. The generalization 
performance (median ∆E) of the techniques using the full set 
training samples was found to be 3.69, 4.22 and 3.55 
respectively for the Imai and Berns method, the Hardeberg 
method and the Shi and Healey methods (with four basis 
functions). In a previous study we found that polynomial and 
neural-network methods are able to perform characterization 
on the same data with a median ∆E of 2.02 and 2.01 
respectively.15 We find no evidence, therefore, that 

multispectral imaging techniques provide any advantage 
over traditional characterization methods for a three-channel 
camera imaging under a single illuminant. Further work is 
required to evaluate multispectral techniques for multiple 
imaging under more than one light source and for camera 
with more than three color channels. 
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