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Abstract  

Given LMS cone quantum catches from a surface under a 
first illuminant what is the best method of predicting what 
the corresponding quantum catches will be for the same 
surface under a second illuminant given only the quantum 
catches of a white surface under both illuminants? The von 
Kries rule is one well known method. In this paper, two new 
prediction methods along with a variation on an existing 
third method are introduced and then compared 
experimentally. In contrast to the von Kries rule which is 
equivalent to a diagonal transformation, all three methods 
estimate a full 3-by-3 linear transformation mapping LMS 
values between illuminants. All the new methods perform 
better than the von Kries rule. 

Introduction 

When there is a change in illumination, the cones’ quantum 
catches change. We address the problem of predicting how 
they change. In particular, we are concerned with predicting 
the LMS cone signals under a second illuminant given the 
LMS cone signals under a first illuminant along with the 
LMS cone signals of a white surface under each of the 
illuminants.  

Although the problem we address here of predicting 
cone quantum catches may be relevant to chromatic 
adaptation, it is not the same as chromatic adaptation. 
Models of chromatic adaptation7,8 aim to predict which 
colors have corresponding appearances to a human subject 
under a change in illuminant. Accurate prediction of cone 
quantum catches will not necessarily lead to accurate 
appearance matches; however, it might be useful as a sub-
component of a full color appearance model. 

One common method of predicting LMS under a 
second illuminant is the von Kries rule,6 which involves a 
diagonal model of illuminant change. Given the LMS 
quantum catch ax observed for a surface under illuminant 
a  the diagonal model predicts the corresponding LMS 
quantum catch of the same surface under illuminant b  as: 

ab Dxx =  

where D  is a 3-by-3 diagonal matrix. 

The diagonal model is limited to 3-parameters, We 
would prefer to use the more general full 9-parameter, 3x3 
linear model of the form: 

ab Mxx =      (1) 

where M  is 3-by-3. 
One reason the full 3x3 linear model is not used is that 

usually there is not enough information available to 
determine the 9 coefficients directly, especially if all we 
know about the two illuminants are the LMS values of a 
white surface under each illuminant. 

The question we address here is: Are there other non-
diagonal models that would perform better than the diagonal 
model? We answer the question with 3 methods we will call 
the Lighting-Matrix Estimation Method (LME), the Palette 
Method (PM) and the Characteristic Vector Method (CVM). 
PM is entirely new. LME is closely related to a derivation 
by Maloney.10 CVM is a modification of an earlier PCA-
based method.2 

LME employs the assumptions that illuminant spectra 
and reflectance spectra are approximated well by 3-
dimensional linear models along with the machinery of 
Maloney and Wandell’s “lighting matrix”.9 As will be 
shown below, the restriction to 3 dimensions means that 
LMSs from the 2 whites provide enough information to 
solve for the 3-by-3 lighting matrix mapping from one 3D 
illuminant to the other. The method starts from the fact that 
given the LMS of a known reflectance (white in this case), a 
3D model of the illuminant spectrum can be calculated. 
Then, based on a 3D model of illumination, the transform 
mapping one lighting matrix to another is calculated. 

PM involves an analysis of the space of possible 
palettes of LMS signals that occur under different 
illuminants. We define an illuminant’s palette as the set of 
all LMS signals obtained from a training set of surface 
reflectances under that illuminant. We use the term ‘palette’ 
rather than ‘gamut’ to avoid confusion with the similar, but 
different, us of the term ‘gamut’ in the context of gamut 
mapping algorithms. Characteristic Vector Analysis is used 
to extract a 3-dimensional linear model approximating the 
set of possible palettes. A change in illumination causes a 
change in observed palette. 
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CVM considers the 9-dimensional space of 3x3 
transformations that model illuminant change and then finds 
the 3-dimensional subspace that best approximates these 
matrices. The required illuminant transformation matrix is 
then built up from the 3 basis matrices based on the LMS of 
white. 

LME: Lighting-Matrix Estimation Method 

Suppose finitely sampled illuminant spectra and surface 
reflectances are modeled by 3-dimensional linear models: 
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Let the cone sensitivity functions be 
.31)( K=kR nk λ  Following Wandell14 and Maloney,10 

we can construct a lighting matrix Λ mapping surface 
reflectance weightsσ to LMSs: 

l = Λσ  

where the kjth entry of Λ is 
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For each of the illuminant basis vectors, iE , we 

similarly define eΛ  e=1, 2,3. Using the linear model for 
)( nE λ , we can also express Λ as a weighted combination 

of the eΛ : 

332211 Λ+Λ+Λ=Λ εεε  

In addition, for a given surface reflectance 
)( nS λ define the surface matrix Ωs with kith entry: 
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We can write the LMS response vector l as a linear 
transform from the ε  weights describing an illuminant: 

l = Ωs ε 

Then given LMS, al of white under illuminant a, 
calculate the weights aε  describing that illuminant via 

a
wa l1][ −Ω=ε  

where Ωw is constructed with a surface reflectance function 
representing white (e.g., 1)( =nW λ ). 

The lighting matrix for a can then be calculated as: 
 

332211 Λ+Λ+Λ=Λ aaaa εεε  

Similarly, from LMS, bl  of white under illuminant b 
we obtain 

b
wb l1][ −Ω=ε  

and 

332211 Λ+Λ+Λ=Λ bbbb εεε  

From the LMS ta of a surface T under light a we obtain 
its reflectance σ as: 

a
a t1][ −Λ=σ   

The LMS bt of reflectance σ  illuminated by b is then 

σb
bt Λ=  

This derivation parallels that of Maloney.10 Taking it a 
step or two further, we can see it can be used to express a 
type of chromatic adaption transform. In particular, we have 

a
ab

b tt 1][ −ΛΛ=  

Letting     1][ −ΛΛ= abM , 

b at Mt=  

M is the desired 3x3 matrix that transforms the LMS 
quantum catch of a surface under illuminant a to its LMS 
quantum catch under illuminant b.  

We note that if a von Kries model of illumination 
change holds then the transform matrix M that is calculated 
is a diagonal matrix (or can be made to be diagonal through 
an appropriate change of sensor basis3). Thus, LME method 
can be seen to generalize the von Kries approach.  

PM: Illumination Palette Method 

Consider n uniformly sampled surface reflectances 
represented as n column vectors n1iTi L=  along with a 
m similarly sampled illuminant spectra mjFj L1= . 

For surface Ti under illuminant Fj the LMS quantum 
catch vector is 
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Define an illumination palette Gi to be a 13Nx  matrix 
the rows of which contain the components of the LMS 
responses arising from all reflectances under illuminant i 
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Then define the world palette, Γ, as the nxm3  matrix 
whose columns consist of all the illumination palettes Gi 

 [ ]T

m
TT GGG ...21=Γ  

Each illumination palette is a point in this high-
dimensional space. A move from one point in this space to 
another represents a change in illumination. Since the 
illumination palettes are all related to one another by the 
common set of reflectances, we expect the underlying 
dimensionality of Γ to be low. In fact, if the von Kries 
model were to hold exactly, it would have dimension 3.  

By singular value decomposition of Γ , we extract a 3-
dimensional basis approximating the column vectors of Γ . 

The remaining issue is to find the mapping between 
illuminants. This is accomplished by solving for the 
illumination palettes to which the whites belong. Without 
loss of generality, we specify the first reflectance to be ideal 
white, i.e.,  

T]1,,1[ L . 

Assume the LMS 3-vectors of white under the two 
illuminants are al and bl . 

Each iΓ  basis palette is a 13Nx matrix containing 
N LMS triples stretched out as a vector. Let us reshape this 
into a table of LMSs and denote the resulting 3Nx  matrix 
as iQ . By assumption, the first row of iQ  is an LMS 
response to a white surface. Since we have three 

31L=iQi , we correspondingly have 3 white responses 
31L=iei . At this point, it is a simple matter to generate 

the palette corresponding to the white response under 
illuminants a. We have a set of 3 equations in 3 unknowns 
which is first solved: 

aleee 1
321 ],,[ −=α   

The whole palette is then 

Qa = α1Q1 + α 2Q2 + α 3Q3  

Similarly, we obtain bQ from bl . 
The transform between palettes, and hence illuminants, 

is then 

ba QQT +=  

where “+” denotes the pseudo-inverse. 
Given any LMS 3-vector ax under illumination a , the 

predicted LMS 3-vector bx  under illumination b  is 

ab Txx =  

CVM: Characteristic Vector Method 

The space of illumination transformation matrices M  from 
Eqn. (1) is 9 dimensional. However, in Ref. [2] it was 
shown that the underlying dimensionality of matrices M  
was close to 3 when the illuminants were normalize to unit 

energy and the mean of the matrices was removed. These 
last two restrictions are removed here. 

To determine the dimensionality of the space of 
matrices M , we first construct a large set of corresponding 
LMSs under different pairs of illuminant. These pairs are 
formed from the 140 illuminants in the Simon Fraser 
University database.1 For each illuminant pair, the 
corresponding LMSs for surface reflectances from the 
Kodak reflectance and Krinov databases5,13 are calculated. 
The best, in the least-squares sense, 3-by-3 illumination 
transformation matrix, M , mapping one set to the other is 
then determined. For n  illuminant pairs, we obtain n  new 
such matrices M . 

Let us represent the set of all transform matrices M  in a 
9xN matrix A  (each column of A  is a 3x3 matrix stretched 
out as a vector). It is well known that if we wish to find the 
set of 3 9x1 vectors which is the best basis for describing A  
we use the singular value decomposition: 

TUDVA =  

U  and V  are Nx9 orthogonal matrices and D  is a 9x9 
diagonal matrix. The first 3 columns of U form the optimal 
basis in that linear combinations of these columns best 
approximate A  in a least squares sense. The first 3 columns 
of U  are sometimes called the first 3 characteristic vectors 
of A . Characteristic vector analysis in effect carries out 
principal components analysis when the mean is not 
subtracted. 

This produces characteristic vectors iu  which can be 
reshaped back into 3x3 matrices iU . An illumination 
transformation matrix M can then be approximated as 

∑
=

≈
9

1i
iiUM η ,  

where 

ii um ⋅=η .  

The remaining issue is how to use this model for LMS 
prediction. Given the LMS 3-vectors, al and bl , of white 
under the two illuminants, the coefficients ic  required to 
predict LMSs under illumination b  from LMSs from 
corresponding reflectances illumination a  can be 
determined as follows. Since Mll ab = , we have  
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)( jU i  denotes column j of matrix iU . 

Letting  
Tcccc ],,[ 321= , 

1−= Qlc b  

Let ak be the LMS 3-vector of a surface under 
illuminant a . The corresponding LMS under illuminant b  
then is predicted as 

ab Mkk =  

Experimental Results 

To test the prediction methods, we use a subset of the 
illuminants and reflectances in the database as a training set 
and the remainder as a test set. The corresponding LMS 
values are calculated based on the cone sensitivity 
functions.12 We use 100 different illuminants and 500 
different reflectances including white in the training 
process. The test set consists of 20,040 LMS values based 
on all combinations of the remaining 501 reflectances and 
40 illuminants in the database. The average error in 
predicting LMS is tabulated in Table 1 for each of the 
methods. The row labeled “ideal 3x3” refers to the best 
possible 3x3 linear transformation based on solving for the 
optimal transform in terms of a mean square error fit over 
the testing data. Ideal 3x3 provides a lower bound on the 
error that can be achieved using a linear model. 

Table 1. Mean, standard deviation and median 
CIELAB E∆  error for each method as well as the 
relative errors for each cone channel. The training and  
testing sets are disjoint.  

 L M S Avg 
CIE 

E∆  

E∆  
Std. 
Dev. 

Median 
E∆  

LME 0.023 0.028 0.024 3.65 3.02 1.93 
PM 0.017 0.026 0.028 3.09 2.40 1.72 
CVM 0.017 0.026 0.021 2.98 2.40 1.64 
Von-
Kries 

0.033 0.043 0.011 3.48 2.78 2.31 

Ideal 
3x3 

0.012 0.015 0.008 0.98 1.08 1.05 

 

Reversibility and Preserving Whites 

On looking at the results in Table 1 one might be inclined to 
favor CVM since it gives the lowest errors (with the 
exception of the ideal 3x3 matrix which we cannot solve for 
given only the 2 white points). However, a disadvantage of 
CVM is that it is not reversible. That is to say if we take 
data under D65 and map it to A and then back again we do 
not arrive at the same starting point. Indeed, even the white 
points may change. Moreover, this problem becomes worse 
the more data is manipulated. If we shuttle back and forth 
between D65 and A our data moves further from where it 
should be (under D65). 

Similarly for PM, it is easy to show that whites need 
not be mapped correctly across illuminants. This of course 
could be fixed by adopting a regression formula to enforce 
the correct mapping of white.4 However, this fix does not 
make the method reversible for other colors. The LMS for a 
red surface mapped from D65 to A and back again will still 
not end up with its original LMS value.  

In the case of, LME where both light and surface are 3 
dimensional, reversibility is ensured. Thus, it is possible that 
in a color management application, we might choose the 
LME approach even though it has a higher error because 
this error is bounded and does not increase with the number 
of times we map data between illuminants. The method may 
also be improved by employing 2-mode analysis11 in the 
construction of the illuminant and reflectance basis 
functions. This will be tested in future work. 

 
 Conclusion 

 
This paper introduced and tested three different methods for 
predicting LMS cone quantum catches under a change in 
illuminant. In contrast to von Kries rule diagonal models, 
the new methods compute full 3x3 linear transformations 
All the methods outperform the diagonal model. Despite its 
higher average error, two advantages of the Lighting-Matrix 
Estimation method (LME) are that it preserves white and is 
reversible.  
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