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Abstract  

An image quality investigation in visible spectral imaging 
was performed. Spectral images were simulated using 
different number of imaging channels, wavelength steps, and 
noise levels based on practical spectral imaging systems. A 
mean opinion score (MOS) was determined from a 
subjective visual assessment scale experiment for image 
quality of spectral images rendered to a three-channel 
display. A set of partial image distortion measures, including 
color difference for color images, were defined based on 
classified and quantified actual distortions produced by 
spectral imaging systems. Principal components analysis 
was then carried out to quantify the correlation between 
distortion factors. Finally, a multiple regression analysis 
(MRA) was carried out between the principal component 
vectors and the measured MOS values to determine the 
picture quality scale (PQS). The obtained quality metric, 
PQS, had high correlation with the subjective measure, 
MOS. The importance of contribution of the distortion 
factors in the image quality metric was also evaluated.  

Introduction 

As the applications of visible spectral imaging become 
increasingly popular,1,2 image quality studies in this field 
have been of greater practical interest.3,4 However, little has 
been studied on the evaluation of overall quality of spectral 
images obtained by digital spectral imaging systems. 
Typically, when designing a wide-band spectral imaging 
system, it is important to select a proper and appropriate 
number of channels to capture the images. During the 
processing stage, while applying the typical principal 
components analysis (PCA) method, it is important to select 
a proper number of basis functions and transform matrix to 
construct the spectral images. Often, one needs to balance 
the accuracy of spectral information and noise tolerance of 
the spectral images. In PCA methods, more channels, or 
more basis functions used, will give more accuracy of 
reconstructed spectral information. However, on the other 
hand, more channels or basis functions used will yield more 
noise in the reconstructed spectral images.3 Other issues, 
like the stability of the transform matrix, the selection of an 
objective function in imaging system optimization, and 

different wavelength increments when representing spectra 
by measurement instruments, will also affect the final 
spectral images. Image quality studies for spectral imaging, 
therefore, are worth doing. 
 
 

 

Figure 1. Conventional construction of a PQS system. 

 
This research included visual psychophysical evaluation 

for spectral images, rendered on an LCD screen. The 
spectral images were simulated using different noise levels, 
different basis functions (or channels) and wavelength steps 
involved in the spectral imaging system designs. To bridge 
the gap between the physical measures and subjective visual 
perceptions of the image quality, four image distortion 
factors were defined and the Picture Quality Scale (PQS) 
method 5 was employed.  

Miyahara’s5 PQS method is widely used for image 
quality evaluation. As shown in Fig. 1, it was originally 
proposed for image quality estimation of monochromatic 
image coding. Based on the perception properties of human 
vision, a set of partial distortion measures are defined as the 
function of the error calculated between the original and 
decoded pictures. The PQS is then calculated from the 
distortion factors by using principal components analysis 
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and multiple regression analysis (MRA) with the subjective 
mean opinion score (MOS) obtained experimentally in a 
quality assessment test. Therefore, the obtained quality 
metric, PQS, has very good correlation with the subjective 
measure, MOS. This research only applied the concept of 
the conventional PQS method to spectral image quality 
analysis, not the exact step-by-step procedures. 

Objective Distortion Factors 

Four distortion factors were defined in this research. They 
were color difference factor for color images, sharpness 
factor, graininess factor and contrast factor.  

Color Difference Factor 
When dealing with reproduction of color image color 

difference equations using S-CIELAB6 are often selected to 
evaluate the color accuracy. In this research the detailed 
procedure proposed by Johnson and Fairchild7 was followed 
with a small modification by adding a modulation transfer 
function (MTF) of the LCD display to the luminance 
channel.  

The spectral images were easily converted into CIE 
1931 XYZ images. When displaying on LCD, chromatic 
adaptation needs to be considered and the LCD device 
characterization needs to be completed. After these steps, to 
use the S-CIELAB color difference equation, the first step is 
to transfer input CIE XYZ tristimulus image, displayed on 
LCD, into an opponent color space, containing one 
luminance and two chrominance channels.6 The opponent 
color space, AC1C2, is a linear transformation from CIE 
1931 XYZ. The next step is to perform frequency filtering 
for each opponent channel in frequency domain. The detail 
of the frequency filters at this step can be found in reference 
7. In this work the only addition is a MTF of the LCD into 
the luminance channel. The MTF of the LCD was derived 
based on Barten’s8 method with some practical modification 
as shown in Fig. 2. 
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Figure 2. MTF of LCD 

 
The three filters used in this experiment are given in 

Eqs. 1-3 where csflum, csfrg and csfby are filters for luminance 
channel, chrominance red-green channel and chrominance 
blue-yellow channel respectively and f is spatial frequency 
in cycles per degree. 
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where a1= 109.1413, b1= -0.0004, c1= 3.424, a2= 93.6, b2= -
0.0037, c2= 2.168, a3= 7.033, b3= 0.000, c3= 4.258, a4= 
40.691, b4= -0.104, c4= 1.649.    

Finally, the filtered images were converted back to 
CIELAB space and the color difference was then calculated 
pixel by pixel, hence the mean color difference was 
obtained. In this research, the simple CIE ∆E*

ab color 
difference equation was used. 

Graininess 
Often root mean square (RMS) granularity is used as an 

objective measure in evaluating the graininess of the 
images.9 In this experiment, the objective measure of 
graininess was defined as the RMS error of original and its 
reproduction images, in the luminance channel of S-
CIELAB opponent color space, after filtering as mentioned 
in previous section. 
 
Sharpness 

To evaluate the effect of resolution on perceived image 
quality, Barten10,11 proposed the so-called square root 
integral (SQRI) as shown in Eq. (4). 
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where f is the angular spatial frequency at the eye of the 
observer in cycle/degree (cpd), fmax is the maximum angular 
spatial frequency displayed. M(f) is the modulation threshold 
function (MTF) of the display, and Mt(f) is the modulation 
threshold function of the eye. The inverse of the modulation 
threshold function of the eye is usually called the contrast 
sensitivity function (CSF) which is given in Ref. 11. It 
should be emphasize that SQRI is independent of image 
content. Researchers11-13 have indicated that SQRI values 
were correlated well to the subjective image sharpness for 
individual images. 

Contrast 
Calabria and Fairchild14 proposed an empirical 

mathematical equation of Single Image Perceived (SIPk) 
contrast. This equation provides a tool to judge contrast in 
image without reference to an original image. Though the 
validity of this equation for other image experiments needs 
further study, SIPk was selected as the fourth distortion 
factor in this experiment. SIPk is given in Eq. 5. 
 

SIPk = -1.505 + 0.131kc + 0.151kl + 666.216ks,     (5) 
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where kc, kl, ks are image chroma standard deviation, 
lightness standard deviation and the standard deviation of 
high-frequency lightness image (filtering by Sobel filter) 
respectively. 

Visual Assessment Experiment 

Four original spectral images, painting, fruit and two human 
portraits2 (one Caucasian one Black) were used as spectral 
imaging targets in simulation. Two imaging systems were 
simulated based on two real digital imaging systems. IBM 
Research PRO\3000 Digital Camera System was applied for 
spectral imaging of fruit and painting targets and SONY 
DKC-ST5 Digital Camera was applied for human portraits. 
The spectral images of fruit and painting targets were 
simulated using 3-channels, 6-channels and 9-channels 
wide-band methods by employing 3, 6 and 9 basis functions 
respectively. The spectral images of the human portrait 
targets were simulated using 3-channels and 6-channels 
wide-band by employing 3 and 6 basis functions 
respectively. The basis functions applied to fruit and 
painting targets were calculated from Vrhel’s15 data set 
including 170 natural and man-made object spectra. Basis 
functions used for human portraits were calculated from our 
previous spectral imaging experiment.2  

Five different wavelength increments were used to 
simulate the spectral imaging capture and reconstruction. 
They are 2nm, 5nm, 10nm, 15nm and 20nm steps. There are 
many distinct independent types of noise involved in digital 
imaging systems. For simplicity and limiting the total 
number of simulated images for image quality visual 
assessment experiment, uniformly distributed random noise 
with three different levels was added into the image capture 
stage in simulation. They are 0 noise, 1 percent noise and 2 
percent noise in terms of the possible dynamic range of the 
image in each channel. The random noise was channel 
independent and was created by pseudo-random variable 
generator using the IDL programming environment.17 
Therefore, including four originals, total of 154 different 
spectral images were created, 46 for each fruit and painting 
target, and 31 for each portrait target. These spectral images 
were then converted into RGB images for LCD to render 
using chromatic adaptation to the display white point18 and 
LCD characterization.  

A total of 32 observers, 18 experts and 14 novices, 
participated in this visual assessment experiment. During the 
visual experiment two images were rendered on the LCD 
each time. The observer was asked to assign image quality 
score for the right side image based on the original image 
rendered on the left side. The details of the visual 
experiment are given in the Ref. 16. 

Experimental Results 

As provided in Eq. (6) the observers were asked to assign an 
image quality score A(i,k) to each image displayed on the 
right side of the LCD, where A(i,k) was the score given by 
the ith observer to image k. For each reproduced image, the 

scores were averaged to obtain the MOS value for a specific 
image, and n denotes the number of observers. 
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The MOS values for four image sets and the 
relationships between MOS and color difference, graininess, 
sharpness and contrast factors can be found in the Ref. 16. 
Generally speaking, they were highly correlated. 

Image Quality Metric, PQS 
The distortion factors may be correlated since some of 

the image distortions contributed to several or all factors. 
The covariance matrix of distortion factors is given at Table 
1. 

Table 1. Covariance matrix of distortion factors. 
DeltE Graininess Sharpness Contrast

DeltE 1.0000 0.8981 0.1511 0.1586
Graininess 0.8981 1.0000 0.2265 0.0135
Sharpness 0.1511 0.2265 1.0000 0.4777
Contrast 0.1586 0.0135 0.4777 1.0000  

 
The covariance matrix indicates that color difference 

factor is highly correlated with graininess factor. This is 
probably due to the fact that the graininess factor was 
defined as the mean RMS error of original and its 
reproduction images in the luminance channel which is 
closely related to the color difference. The correlations are 
low for the rest of the distortion factors.  

The PCA is a good tool to quantify these correlations 
among distortion factors. By performing the PCA to the four 
distortion factor data sets, the cumulative contribution 
percentages of the first one to four principal vectors were 
obtained and are given in Table 2. 

Table 2. Cumulative contribution percentage of 
principal vectors for distortion actors. 

                                            Number of principal components
1 2 3 4

Cumulative percentage 98.90 99.89 100.00 100.00  

 
The results in Table 2 indicate that the first three 

principal vectors covered 100% of all variance of four 
distortion factors. The space spanned by the four distortion 
factors was essentially three-dimensional. This was 
consistent with the high correlation between color difference 
and graininess factors. It suggests that three properly defined 
distortion factors will describe the impairment of images 
with the same efficiency as using four distortion factors 
defined in this research. Furthermore, two properly defined 
distortion factors will be quite safe to describe most of the 
coverage of four factors used here since the first two 
principal components covered as high as 99.89% of the 
variance as shown in Table 2. This provides us some 
direction for future research.  
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To investigate the importance of the four distortion 
factors in describing the image impairment correlation 
coefficients between the distortion factors and their principal 
vectors were calculated. The results are given in Table 3. It 
indicates that the first principal vector mostly reflected the 
coverage of color difference and graininess factors. Since 
the first principal vector covered most the variance of the 
distortion factors, it may suggest that the color difference 
and graininess factors were the most important factors in this 
research. The correlation between the first principal vector 
and the contrast factor was so low that it is safe to say that 
the contrast factor contributed very small amount of 
description in most image distortion. The second principal 
vector still had high correlation with color difference factor. 
This further proves that the color difference factor was the 
most important factor in describing the image impairment in 
this research when using four distortion factors. The second 
principal vector also correlated with graininess and contrast 
factors with the correlation coefficients of over 0.65. 
Loosely speaking, the order of important from high to low 
for the four distortion factors is, color difference, graininess, 
sharpness and contrast.  

Table 3. Correlations between distortion factors and 
their principal vectors. 

                                       Principal components
Factors 1 2 3
DeltE 0.8927 0.8411 0.4927

Graininess 0.8681 0.6856 0.3695
Sharpness 0.1232 0.1387 0.4014
Contrast 0.0146 0.6674 0.6774  

 
 
To obtain a numerical distortion measure, or an image 

quality metric PQS, a multiple regression analysis (MRA) 
between the principal vectors and the MOS values was 
performed. The first three principal vectors were employed 
in this task. First, PQS was expressed in terms of the three 
principal vectors as given in Eq. 7 where the coefficients 
were determined from MRA by fitting the MOS, Z1, Z2 and 
Z3 are first three principal vectors respectively. 

PQS = -3.41 + 78.19⋅Z1 + 13.32⋅Z2 - 6.38⋅Z3  (7) 

Next, the basis vectors can be expressed with respect to 
the distortion factors. This was done by MRA method. 
Substituting the basis vectors, in terms of distortion factors, 
into Eq. 7, PQS was finally obtained with respective to 
distortion factors. The results is given in Eq. 8. 

PQS = -3.410 – 0.168⋅FE + 0.103⋅Fg + 0.062⋅Fs +0.002⋅Fc    (8)  

where FE, Fg, Fs, and Fc are color difference, graininess, 
sharpness and contrast factors respectively. The relationship 
between PQS and MOS is shown in Fig. 3. 

The correlation coefficients between PQS and MOS 
was 0.92. The mean absolute error between MOS and PQS 
was 0.41. Given that the subjective image quality scores of 
the test images had at most precision of 0.5, an average 
absolute error of 0.41 seems adequate.  
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Figure 3. PQS vs. MOS. 

 
Other methods were also tried using direct fit between 

MOS and distortion factors and the correlation coefficient 
could be as high as 0.95. Due to the limit of space, the 
details are not provided here. The importance of 
contribution of distortion factors in image quality metrics 
was also investigated. The results indicated that: 
1. When using single distortion factor the color difference 

factor itself was a good image quality metric. PQS 
repressed by color difference only had as high as 0.953 
correlation with MOS. 

2. When using two distortion factors in PQS, the 
combination of color difference and graininess would 
be the best choice with the correlation coefficient of 
0.9211 while the combination of color difference and 
graininess would be a good candidate. If performing 
regression directly from the distortion factors, the 
combination of color difference and contrast factors 
would provide the best quality prediction with a 
correlation coefficient of 0.9631. 

3. The combination of color difference, graininess and 
contrast factors would provide the best prediction of 
image quality when using three distortion factors to 
represent PQS. The correlation coefficient between 
PQS and MOS was as high as 0.92. However, when 
performing regression directly to the distortion factors, 
combination of color difference, sharpness and contrast 
factors would provide the best result with the 
correlation coefficient of 0.9666 
 
It should be noted that the PQS determined by PCA 

method with MRA tools considered the statistical space 
distribution of the distortion factors. It did not achieve the 
highest correlation to MOS by eliminating the impact of 
some distortion factors, such as the way a simple least 
square regression directly based on the distortion factors 
did. Therefore, PQS is more practical flexible and feasible 
in application than those from simple best fit for specific 
data, though the latter may have higher correlation to MOS 
in this experiment.  

Limitations of PQS Applications 
The distortion factors applied in this research spanned 

three dimensions. Based on MRA statistical regression 
techniques, PQS could be reduced to one dimension factor 
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which had a good correlation with image quality MOS. In 
the statistical regression, the contributions of the distortion 
factors could be positive or negative. If these contributions 
were outside the range of which the regression was 
considered, the results of PQS may be invalid, i.e., situation 
for extreme low quality range. Thus, a meaningful PQS 
required meaningful contributions from the distortion 
factors. As suggested by Miyahara,5 for the PQS to be 
meaningful, one requirement is that the weighted 
contribution of each of the factors as given in Eq. 8 be in the 
range of one to five. The performance of PQS could be 
improved by performing piecewise step fit or a further 
quadratic equation fit of above PQS to get the best final 
PQS for each range of the image quality.  

Conclusions 

Spectral images were simulated and a visual image quality 
experiment was performed. An image quality score MOS 
(mean opinion score ) was obtained. Four distortion factors 
were defined. Image quality metric, PQS, was estimated and 
evaluated based on PCA and MRA methods. The high 
correlation and low mean absolute error between PQS and 
MOS proved that this approach was successful. Color 
difference was the most important factor in predicting the 
color image quality and in itself is a very good image quality 
metric. The importance of contribution of distortion factors 
in image quality of spectral imaging systems provided us 
theoretical guidance in image quality evaluation and further 
improvement. 
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