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Abstract

Computer vision applications are able to model and recon-
struct three dimensional scenes from several pictures. In
this work, we are interested in the group of algorithm that
register each image with respect to the model and aim at
constructing a model of the scene. At the lowest level,
most of these algorithms are comparing the pixel values of
the image to the ones predicted by the model to refine the
result. As research advances, the models are getting better
and better, but no matter how complex they are, there will
always be unpredictable situations that cannot be handled
by the model. A recurring example is when an object ap-
pears in one image of the set, but in none of the others.
The situation occurs, for example, when a moving entity
crosses rapidly the field of view of the camera. In this
work, we study the error generated by such an unexpected
object at a pixel level and how colour can improve the esti-
mation. We will derive the expected error distribution that
this hypothetical object may cause.

Our model is primarily intended as a basis for outlier
removal in scene modelling algorithms. It gives a clear an-
swer to whether, and with which confidence, a part of the
image can be considered as part of the model or should be
discarded, without using any dedicated thresholding scheme.

The model is demonstrated on a trivial example where
we match two images of a scene using a static camera.
The example shows that the outlier distribution can be pre-
dicted by using the histograms of both images. We also
show that by considering not only greyscale information,
but also colour information, the outlier detection perfor-
mance improves. We want to emphasise that the central
part of this paper is the outlier modelling and not the out-
lier rejection scheme, which could be solved—for the triv-
ial examples we are showing—by many other techniques.

1. Introduction

We are interested in studying the modelling of scenes con-
structed from several photographs. More specifically, we
are building a tool to improve the robustness of computer
vision algorithms that work with multiple views of a scene.
These models often use bayesian inference where every-
thing fits to a nice theoretical framework until the system
has to deal with objects that suddenly appear in one image
of the set, which we call outliers. The usual techniques to
handle this situation are based on optimisation or statistics
[1, 2] and are applied to the imaging domain without taking
into account all the knowledge that could be extracted from
images. Generally speaking, a standard outlier rejection
scheme consists in characterising the class of data to be
expected from the experiment, and defines the outliers as
being the data set that “diverges too much” from this class
[3, 4, 5, 6, 7]. This implies the use of a threshold which is
chosen in a somewhat arbitrary fashion—for example by
deciding that the system should allow a certain amount of
false rejection. Other techniques assume that the outliers
can be characterised by a uniform distribution [8, 9, 10]
or a gaussian distribution [11] and handle the outlier re-
jection as a standard mixture problem1. An outlier model
based on image content is introduced in [12], and shows
on an image stitching example that such a model improves
substantially the robustness of the stitching to outliers.

We propose to extend the work in [12] to take advan-
tage of colour information in the images. We also charac-
terise an outlier in an image sequence as a region that un-
dergoes an unexpected motion, or an object that suddenly
appears in one of the images. The key idea is in the way
the outlier statistical characteristics are predicted: We as-
sume that by comparing two arbitrary parts of two images,
we get an error pattern similar to the one generated by an
outlier. We then compute the expected error distribution
generated by the outliers. In a more general context, one
image is the scene measured by the camera, and the other
the prediction given by the scene model, based on a dif-
ferent image. The scene model should take into account

1We are not implying here that these assumptions are wrong or sub-
optimal in the context in which the papers are written.
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all processing steps that may cause a colour mismatch (for
example white balancing), see [13, chap. 5] for a review of
the current techniques.

To evaluate the performance of our approach, we chose
the simplest scene model we could think of: a two di-
mensional scene pictured with a static camera. We use
a laplacian distribution to characterise the inliers in or-
der to accommodate for acquisition noise. We illustrate
our model by computing an outlier rejection scheme that
is expressed as a standard mixture of inliers versus out-
liers [14, 15]. The outlier rejection is carried out using a
maximum a-posteriori criterium. Despite being trivial, the
example shows two fundamental benefits of outlier mod-
elling: First, the outliers can be detected and rejected with-
out using any arbitrary threshold, and second, the system
can handle an arbitrary percentage of outliers in the im-
age. Furthermore, the papers shows that colour can be
of great help in segmenting out the outlier. We chose a
simple model because a more complex one would be less
appropriate to distinguish the influence of colour from the
influence of the other parameters on the results.

The paper starts by presenting the colour outlier model,
which is the principal focus of this paper. It reviews first
the case of greyscale images presented in [12] and then
extends it to colour images. The outlier model is verified
by comparing two images that have nothing in common
and see whether the error distribution is the one predicted
by the model. It is followed by a more practical exam-
ple that shows a scene taken with a static camera and see
if the model can predict the error distribution in this case.
For this second experiment, a model for the inliers is re-
quired, as discussed in Section 3. To illustrate what the
model does to the data, we plotted for each pixel the poste-
rior probability of belonging to the outliers using greyscale
visualization. The reader should keep in mind that this
pseudo-segmentation is solely obtained using individual
pixel colours, and that the goal is to show the behaviour of
the outlier modelling and not to segment the image (which
could be obtained by many other techniques in such a sim-
ple example).

Remark

The model presented here deals with image differences at
a pixel level. It has nothing in common with all the work
in modelling the statistics of natural images (see [16] for
an example).

2. The outlier model

Considering a photographic image pair, an error is obtained
by subtracting the pixel values of the first image from the
pixel values found at the same location in the second im-

age. In a practical computer vision application the image
pair is the result of a complex transformation—called reg-
istration—of the original photographs. Here, we just con-
sider the original photographs, taken with a static camera.

We believe that outliers generate an error pattern sim-
ilar to the error generated by comparing two random re-
gions of the scene. The idea is to characterise the outliers
by computing their error distribution and then fit a mixture
of inliers and outliers to the error data. The probability that
a particular pixel belongs to the outliers can be computed
using a Maximum A Posteriori (MAP) estimation.

Let I0 and I1 be two images that have nothing in com-
mon. We will assume that I0(p) and I1(p) are two inde-
pendent stationary random vectors (containing each three
colour components), p being the position in the image.

2.1. Greyscale images

Let us first review the model in [12] for greyscale images.
The error distribution is given by

P(r) =
∑
∀u

Pr{I0(p) = u, I1(p) = u − r}, (1)

where u denotes all possible values contained in the im-
ages, and r is the error value. Note that for greyscale im-
ages I0(p) and I1(p) are scalars. Since I0(p) and I1(p)
are independent,

P(r) =
∑
∀u

Pr{I0(p) = u}Pr{I1(p) = u − r}. (2)

By approximating the intensity probability distribution of
the pixels in the image with the image histogram H, nor-
malised such that

∑
u H(u) = 1, Equation (2) becomes

P(r) =
∑
∀u

H0(u)H1(u − r). (3)

In other words, the outlier distribution is approximated by
the cross-correlation of the two image histograms.

2.2. Colour images

When matching colour images, the error distribution is
given by

P(r) =
∑
∀u

Pr{I0(p) = u}Pr{I1(p) = u − r}. (4)

where u denotes all possible values contained in the im-
ages, and r is the error value. Note that both are vec-
tors with 3 components, r � [rα, rβ , rγ ]T . By approxi-
mating the probability mass function of the pixels in the
image with the image histogram H (normalised such that∑

u H(u) = 1), Equation (4) becomes

P(r) =
∑
∀u

H0(u)H1(u − r). (5)
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This last equation is a three dimensional convolution oper-
ation. In order to simplify it, we additionally approximate
the three dimensional convolution as the product of three
unidimensional ones. This is equivalent to assume that the
errors in the three colour components are independent2. In
practice, the colour components are uncorrelated by mean
of a simple ad hoc transformation. However, the assump-
tion of error independence in the channels reduces drasti-
cally the computational burden and, as will be shown in
the experimental evaluation of the model, it still provides
very good results. Finally, the overall error probability is
approximated by

P(r) =
∑
∀uα

H0α(uα)H1α(uα − rα) ·

·
∑
∀u

β

H0β(uβ)H1β(uβ − rβ) ·

·
∑
∀uγ

H0γ(uγ)H1γ(uγ − rγ). (6)

In other words, the outlier distribution is equal to product
of the cross-correlations of the images histograms, com-
puted independently on each colour component of the im-
age pair. Equation (6) defines the outlier Model.

2.3. Experimental evaluation of the modelling

To evaluate the outlier model, we will compare two im-
ages that have nothing in common, compute the error his-
togram, and compare it to the predicted outlier distribu-
tion. We call the error histogram the histogram of the im-
age obtained by subtracting one image from the other. In
the derivation of the outlier model, we assumed that the
errors in the three colour components are independent3.
To match at best this assumption, we first decorrelate the
colour components with a Singular Value Decomposition
(SVD): Let IRGB be a n× 3 matrix containing all the pix-
els of both images—each column of IRGB contains the
red, green and blue components of the pixels in the image.
The SVD of IRGB is defined as

IRGB = U · S · VT , (7)

where S is a diagonal matrix and U and V are unitary
matrices. The matrix V is used to transform the pixel RBG
values into a new colour space as follows

Iαβγ(p) = VT · IRGB(p)

where Iαβγ(p) are the colour components of a pixel ex-
pressed in the new colour space and IRGB(p) is the pixel

2This does not imply that the three colour components have to be
independent.

3We did not assume that the colour channels are independent.

in the original image. After having transformed the images
in αβγ space, we apply the procedure of Section 3. Note
that the αβγ space has no perceptual meaning. However,
with respect to colour image processing, a decorrelation
transform as applied here can be interpreted as a transfor-
mation into opponent colour image encoding.

Figure 1 shows the fit of the outlier model to the error
histogram generated by comparing a cave to a grapevine
image. We can see that there is a very good match between
the model and the measurements.

3. The inlier model

The inlier model is of little importance here, but is required
to build a practical application example. For our situa-
tion, an inlier is—ideally—an object that appears at the
exact same location in the image pair, and has the exact
same pixel value. In practice, the pixel values may dif-
fer because of acquisition noise, and the image might not
be perfectly aligned. We use a laplacian distribution with
unknown variance to be able to handle these differences.
Since the error values have 3 decorrelated dimensions, we
will assume that the error distribution can be written as a
separable laplacian:

PI(σα,σβ ,σγ)(r) =
(

1
2σα

· e− |rα|
σα

)
·
(

1
2σβ

· e−
|rβ|
σβ

)
·

·
(

1
2σγ

· e−
|rγ |
σγ

)
. (8)

See Figure 2 for an experimental evaluation of the inlier
model. Note that the distribution in (8) is only an approxi-
mation of a multivariate laplacian [17].

4. The outlier mixture model

By combining the results of the two previous sections, we
can build a new model for matching two images. This
model is a mixture of the outlier model of Section 2 with
the inlier model of Section 3. We can describe the error
generated by matching two images as

P(r) = φPI(r) + (1 − φ)PO(r) (9)

Hm = φHI(σα, σβ , σγ) + (1 − φ)HO, (10)

where PI stands for the inlier probability density, PO is
the outlier probability density, φ is the proportion of in-
liers, and r the error vector. Equation (10) is equivalent to
(9) but using vector notation, where Hm denotes the model
histogram, HI(σα, σβ , σγ) the inlier histogram and HO
the outlier histogram. To fit the outlier mixture model to
the measurements, we compute the maximum likelihood

IS&T/SID Eleventh Color Imaging Conference

109



(a) (b)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Colour component 1

Error Value

Error histogram
Outlier model

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Colour component 2

Error Value

Error histogram
Outlier model

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6
Colour component 3

Error Value

Error histogram
Outlier model

(c) (d) (e)

Figure 1: Illustration of the outlier model. The images in (a) and (b) are compared, and the error histogram is plotted versus the outlier
model in (c), (d) and (e), for each colour channel. The outlier model exhibits a good match with the measured error histogram.

estimates of the parameters {φ, σα, σβ , σγ}
{

σ̂α, σ̂β , σ̂γ , φ̂
}

= arg max
∑
∀rα

Heα(rα) log [Hmα(rα)]+

+
∑
∀rβ

Heβ(rβ) log [Hmβ(rβ)] +
∑
∀rγ

Heγ(rγ) log [Hmγ(rγ)] ,

(11)

where He is the error histogram, i.e. the histogram of the
image obtained by subtracting one image from the other.

Note that the outlier distribution depends only on the
image histograms and not on the error. In other words, we
can compute the outlier distribution without doing any im-
age superpositions or any error computation. Nevertheless,
to compute the outlier proportion (and the inlier standard
deviations) we need to compute the error by superimpos-
ing the images.

5. Where is the outlier?

To get a better feeling of the outcome of the experiment,
we propose to show a pseudo-segmentation of the image.
This is done, once the inlier characteristics and the outlier
proportion are known, by computing the probability that a
particular pixel belongs to the inliers, using a MAP crite-

rion:

P(inlier | r) =
P(inlier) · P(r | inlier)

P(r)

=
φHI(σα, rα)HI(σβ , rβ)HI(σγ , rγ)(

φHI(σα, rα)HI(σβ , rβ)HI(σγ , rγ)+
+(1 − φ)HO(rα)HO(rβ)HO(rγ)

) , (12)

where HI denotes the inlier histogram, HO the outlier
histogram and φ is the proportion of inliers. r is the error
vector, σ is the inlier standard deviation and α ,β, γ de-
note the colour channel. This probability P is plotted as a
greyscale value in Figure 4.

6. Results

The outlier mixture model is evaluated using the pictures
of Figure 3 showing a fountain; in one of them a lady with
an umbrella passes by—the lady being the outlier. The er-
ror histogram is compared to the outlier mixture model in
Figure 5. The fit has been performed by using all three
colour channels, as described in Section 4. Then, for each
pixel, the posterior probability that it belongs to the out-
liers is shown in Figure 4. To show the impact of the
colour information, this probability is first computed using
only the first colour channel, then using two colour chan-
nels and finally using the whole colour information. We
can clearly see that each colour component improves the
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Figure 2: Error distribution computed on two consecutive images of the same scene, shown for the three colour channels. (a) α channel.
(b) β channel. (c) γ channel. Because of acquisition noise, and because of a slight displacement of the camera between the two views
(less than one pixel in amplitude), the images are not exactly alike. The histogram of the error is compared to a laplacian distribution,
showing that the laplacian is appropriate to model the inliers.

(a) (b)

Figure 3: Images used to test the outlier mixture model. The lady with the umbrella forms the outliers of this picture pair.

result. The second example in Figure 6(c) shows the re-
sistance of the model to a large numbers of outliers. Here,
a standard outlier rejection scheme would have difficulties
to perform a segmentation, as shown in Figure 6(d).

To test the mixture model in an even more extreme sit-
uation, we applied it to the images of Figure 1. The model
found 99.8% of outliers.

For comparison, we ran the same test by assuming that
the outlier distribution is uniform: the system concluded
that there were no outliers in the image pair of Figure 1.
It accommodated the error by using a huge variance for
the inliers. Hence, our model is more robust and precise
than the uniform distribution to model the outliers in image
pairs.

6.1. Iterating the outlier mixture model

To get the outlier model of the mixture in Section 4, we
used the histogram of the whole image to compute the
outlier distribution. According to our outlier model, we

should have built our histograms using only the pixels that
belonged to the outliers—that were unknown at that time.
Now, by assuming that the outlier mask of Equation (12)
is a better estimate of the outlier than the whole image,
we can reiterate the algorithm by constructing the image
histograms according to the outlier mask. This is done
by making the contribution of each pixel to the histogram
equal to its probability to belong to the outliers. We can
then recompute the outlier distribution, and estimate the
parameters of Equation 11 once again. The improvement
in the outlier histograms is depicted in Figure 7. In prac-
tice only one iteration is needed, and the fewer outliers are
in the scene, the more important this iteration step is. Nev-
ertheless, we found that this iteration has only little impact
on the overall outlier proportion and on the outlier mask.

6.2. Pushing the model to its limits

Until now, we assumed that the errors in the three uncor-
related colour channels were independent. To see the im-
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(a) (b) (c)

Figure 4: Illustration of the outlier mixture model. The images in Figure 3 are compared. For each pixel, the probability that it belongs
to the outliers is shown by its greyscale value. (a) is using only the first colour channel (b) uses the first two colour channels (c) uses
all the colour information to compute the model parameters.
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Figure 5: Comparison between the outlier mixture model and the error histogram of the images in Figure 3. The logarithm (in base
10) of the error histogram is plotted against the mixture model. (a) First colour component α—the one with the largest singular value.
(b) second colour component β (c) third colour component γ.

pact of this assumption on the results, we recomputed the
example of Figure 5 by using Equation (5) as the outlier
model. Our tests show only a marginal difference between
the separable approach (of Equation 6) and the present one.
Figure 8 shows the difference between the two approaches.

The computation of the non separable model (in Equa-
tion 5) is very expensive. The computation of the out-
lier histogram requires 248 operations. Hence, to build
the outlier histogram, we used a slightly different—but
equivalent—technique, which consists in subtracting each
pixel of the first image to every pixel of the next image.
This requires 3 · n2 operations, where n is the number of
pixel in the image. Unfortunately, it is still too complex to
be of any practical use.

7. Conclusions

This paper presents a new approach for modelling outliers
when comparing colour images on a pixel-to-pixel basis.
It extends the work in [12] in two ways: The main contri-
bution is the handling of colour, and a minor contribution
is the iteration of the outlier model. Colour is shown to
improve the segmentation of a scene in a trivial example.
Iterating the model gives more reliable histograms when
there are few outliers.

In general, the outlier model can be used with any mo-
tion and scene modelling scheme that compares the model
to the incoming image at a pixel level. The inlier model
should deliver a probability density function for the pixel-
to-pixel error and should also allow for a certain amount of
mis-registration in order to iteratively obtain a better model
of the scene.

Our outlier model can be used in many ways: It can
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Figure 6: Illustration of the outlier mixture model. The images in Figure (a) and (b) are compared. For each pixel, the probability that
it belongs to the outliers is shown by its greyscale value: in (c) using our outlier model and in (d) using a uniform distribution to model
the outliers. (d) shows a total failure of the uniform model—the system tagged everything as inlier with a large variance. This shows
that by using our model we can substantially improve the outlier resilience at the lowest level of a computer vision algorithm.

be applied to robust motion estimation by using the poste-
rior probability to belong to the inliers as a weight factor
in a motion estimation iteration, as was done in [12] for
greyscale images. The overall percentage of outlying pix-
els can also be applied when performing change detection.
In general, defining an outlier as a random superposition
should enable the construction of more sophisticated algo-
rithms for segmenting out outliers from images.

The model cannot be used in the cases where the in-
liers are not characterised by identical pixel values in the
ideal case (after being processed by an upper level mod-
elling scheme), such as in image retrieval applications, for
example.
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Figure 7: Same as Figure 5 but computing a second iteration of the outlier modelling. We can see that the model better predicts the
error histogram.
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Figure 8: Comparison between the separable and non separable outlier model. (a) outlier mask obtained using 3 separate colour
components (Same as Figure 5c). (b) outlier mask using the 3D outlier model of Equation (5). The three-dimensional model is slightly
better at separating the outliers from the background, but its computation cost is prohibitive.
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