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Abstract

This paper introduces a new approach to color image pro-
cessing that operates on multiscale edge descriptions of
color component images. The multiscale edges are com-
puted in the wavelet domain and recorded using the Wavelet
Transform Modulus Maxima representation. The resulting
description provides a means for assessing the strength and
significance of individual edges, with deference to edges
that coincide between color components. This leads to an
effective means for suppressing noise in color images. A
method of edge sharpening is also demonstrated. Results
show the viability of this new form of processing.

Introduction

The bands of data comprising a color image are uniquely
correlated. Perhaps the most apparent similarity is the ex-
istence of common image structure. Color component im-
ages typically exhibit edges and object outlines that coin-
cide, yet vary in size and strength. These are inherent traits
that can be exploited for color image enhancement.

In the following, we present a new framework for pro-
cessing three-component color image data. The new frame-
work is based on a multiresolution analysis of color im-
age edge information. In many ways, this follows directly
from Marr’s� computational theory of vision in which mul-
tiscale edges are used to derive a “primal sketch”. Ac-
cording to Marr, the “primal sketch” provides a fundamen-
tal description of the underlying scene. We extend Marr’s
conjecture to color by cross analyzing the multiscale edges
of each color component in an effort to correlate the image
structure found in each component.

Marr’s work on vision employed Laplacian-of-Gaussian
(LoG) filters which can be used to locate the multiscale
edges of an image. These filters constitute a model of the
simple receptive field of the human visual pathway, hence
they bear biological relevance. Unfortunately LoG filters
provide an analysis-only computational pathway. There is
no effective way to reconstruct image data from a Laplacian-
of-Gaussian based edge decomposition.

The necessary tools arrived when Mallat and Zhong�

devised the Wavelet Transform Modulus Maxima (WTMM)

representation along with an associated reconstruction al-
gorithm. This representation provides a Marr-like analy-
sis of multiscale edges, but also provides a mechanism for
synthesizing image data from a set of multiscale edge in-
formation. The ability to analyze and synthesize image
data to and from multiscale edgemaps enables the process-
ing strategy outlined Figure 1.

input color image
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Edgemaps
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from Filtered  Edgemaps

enhanced color image

Figure 1. Outline of multiscale processing strategy.

The first step is to split the input color image into a
constituent set of color component images and then com-
pute the multiscale edgemaps of each component image.
The respective edgemaps are then analyzed in an effort
to identify physically significant edges. These edges are
then filtered to achieve a desired enhancement (e.g. boost
for strengthening, diminish for suppression). The final
step is to synthesize new color component images from
the filtered edgemaps using the WTMM reconstruction al-
gorithm.

It should be noted that aspects of this processing strat-
egy have recently been explored by other investigators. For
example, Kotera et al.�� � have developed image sharpen-
ing algorithms that assess the strength of edges in a color
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image and apply scale-specific filter operators accordingly
(i.e. large scale sharpening operators are applied to soft
edges, fine scale sharpening operators are applied to hard
edges). Likewise, Scheunders� has devised an alternate
way of analyzing multiscale edges in color images using
wavelets, with the express purpose of image filtering and
enhancement.

WTMM Representation

The Wavelet Transform Modulus Maxima (WTMM) rep-
resentation of an image records the location, magnitude,
and orientation of the image’s multiscale edges at dyadic
scales of analysis. It is constructed from a particular class
of wavelets that compute derivatives of smoothed versions
of the input signal.� For two-dimensional signals, partial
derivatives are computed at each scale, �, resulting in the
following horizontal and vertical wavelet transform sub-
bands
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where �� � ��	��� ���	�� �	�� is a dilated version of a
smoothing function ���� ��. The partial derivatives (1) and
(2) can be combined to form gradient vectors which can
then be used to locate edges at scale �.

Spatially sampled versions of the preceding calcula-
tions can be computed efficiently using a digital filter bank.
This results in horizontal and vertical wavelet subbands at
dyadic scales of analysis, ���� , for 
��� �� � � �� �	
��� �
where � is the smaller of the input image’s pixel dimen-
sions. Spatially sampled versions of edge gradient modu-
lus and angle data are computed from the resulting wavelet
coefficients
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A Canny-like edge detector is then used to locate the
modulus maxima, i.e. edges. This leads to the WTMM
representation which records the position, �����, mag-
nitude ��������, and angle ��������� of multiscale
edges. The integer 
 is an index that identifies the scale
of analysis (resolution). The WTMM representation also
records a low-pass “coarse-image” that is used during re-
construction.

Analyzing Color Edgemaps

The WTMM representation and reconstruction algorithm
developed by Mallat and Zhong provide a means for pro-
cessing color image data in the multiscale edge domain.
The first step is to compute multiscale edgemaps for each
component of the input color image. In the following we
assume the input is an RGB image.

Let ��������, ��������, and �������� be
“modulus images” from the WTMM representations of the
R, G, and B components, respectively. Modulus images
have zero value at pixel locations where there is no edge,
and edge magnitude values at all other pixel locations. The
corresponding angle data are stored in “angle images”
���������, ���������, and ���������. Angle im-
ages have undefined pixel values at locations where there is
no edge, and edge gradient angle data at all other locations.
Three low-pass “coarse images” are also produced. These
are labelled ���������, ���������, and ���������.

Once we have generated the WTMM representation
for each component image, it becomes possible to analyze
corresponding sets of edgemaps, per the second block of
the processing strategy outlined in Figure 1. The goal is
to identify physically significant edges from the pool of
edges found in the multiscale description. A simple way
to do this is to sum the red, green, and blue modulus data
(for a specific scale of analysis) and determine where the
resulting “aggregate” data exceeds a fixed threshold. If
all three components exhibit an edge at a certain location,
then the resulting aggregate value is expected to be large,
which indicates that a physically significant edge exists at
that location.

The location of large aggregate values, and hence phys-
ically significant edges, are recorded in an “edge likeli-
hood” mask ��� �����. This mask is computed by first
summing component modulus data, creating an aggregate
modulus image

�������� � �������� ���������

� �������� (5)

then clipping all pixels using a scale-specific threshold,
��� , and normalizing the resulting image so that it has val-
ues falling on ��� ��. In summary,

��� ����� � g�
��
��������� � 	��� (6)

where g
� ��� is a clipping function, e.g. MIN��� � �.

Figure 2 shows an example of an edge likelihood mask
for scale 
 � �. White pixels have the maximum possi-
ble mask value, 1, and correspond to physically significant
edge locations. All other edges have values that vary, with
respect to the clipping level, in direct proportion to their
aggregate strength. This may be regarded as a measure of
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Figure 2. Example of an “edge likelihood” mask computed from
a noisy image at scale ��� using (6).

the “edge likelihood” of these remaining edges (the likeli-
hood that an edge is structurally significant).

Scale-specific threshold ��� is calculated from the his-
togram of the respective aggregate modulus image data.
Figure 3 demonstrates the method used in this report. The
desired threshold is computed by doing a linear least squares
fit of the right, downward edge of the main lobe of an ag-
gregate modulus image’s histogram. The least squares fit
is limited to histogram data falling between ��� and ���
of the main lobe’s peak value. The x-intercept of the re-
sulting line specifies the threshold.

threshold, T0 100

Figure 3. Sample aggregatemodulus histogram with construction
lines showing how auto-threshold is computed.

Denoising Example

The analysis of color edgemaps leads the way to edgemap
filtering operations. As a first example of edgemap filter-
ing, we show how “edge likelihood” masks can be used to
suppress noise in color images. The input is assumed to
be a noisy RGB image. This is a practical problem that
affects digital cameras.�

Image denoising is accomplished by recognizing that
edge likelihood masks, ��� �����, can be used to form
multiplicative masks that attenuate noise-related edges (i.e.
edges that are not deemed to be physically significant).
This is carried out by multiplying individual component
modulus images by the appropriate mask. Previous work��

discussed the use of edge likelihood masks directly. Im-
proved noise suppression is achieved by using squared ver-
sions of the edge likelihood masks, as used herein. The
necessary masks are computed and applied to the two finest
scales of analysis, i.e. ���� and ����. We restrict mask-
ing to these scales since these are scales for which color
component edges exhibit the greatest proportion of coinci-
dent edges.	� �


The following filtering operation performs “accelerated”
noise suppression
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where primed quantities represent filtered data. Note that
the filtering operation does not affect the angle or coarse
image data (these are left unfiltered).

The filtering operation (7) produces three new sets of
WTMM data, where each set corresponds to a particular
color component. New, denoised image components are
then synthesized from each of the new sets of WTMM data
using Mallat and Zhong’s reconstruction algorithm. The
resulting color component images are combined to form a
denoised color image. Figure 4 demonstrates the denois-
ing property of this form of processing. The left half of
Figure 4 shows the original, noisy image while the right
half shows the result obtained from edgemap filtering.

Figure 4. Demonstration of noise suppression produced by mul-
tiscale edgemap filtering (image is originally in color).
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Experimental Results

In order to assess the effectiveness of the filtering opera-
tion (7) we compare it to wavelet thresholding. Wavelet
thresholding is a method of image denoising that is known
to have near optimal performance (as measured by signal-
to-noise ratio).� The following tests were performed on
images contaminated by additive Gaussian (����) noise.

Figure 6 (at end of report) shows noise suppressed out-
puts obtained from multiscale edgemap filtering (7) and
component separable wavelet thresholding, along with the
original noisy image from which these outputs were de-
rived. The wavelet thresholding computations were per-
formed using undecimated Daubechies wavelets with a hard
threshold of � � ������� where ���� is an estimate of the
standard deviation of the noise (cf. Mallat�).

A comparison of Figures 6b and 6c reveals that the
edgemap filtering approach of (7) does a better job of main-
taining edges and image details than the wavelet threshold-
ing approach. This is particularly evident in the magnified
portions of each image shown in Figures 6e and 6f. Mul-
tiscale edgemap filtering is also less prone to smudging
artifacts. This was supported by tests in which wavelet
thresholding was performed using reduced size thresholds.
Smudging artifacts continued to be evident for � � �������,
and gave way to noise and wrinkle artifacts at � ��������.
The edgemap filtering approach produced no such smudg-
ing as thresholds ��� and ��� were reduced.

Additional tests were carried out using luminance-only
processing. These were carried out by denoising the Y-
component of a YIQ transformation of the RGB input im-
age (using edgemaps and wavelet information computed
strictly from the Y-component). The denoised luminance
image, Y’, was then used to derive a corresponding R’G’B’
image using Y’/Y scaling ratios (taking care to clip Y’ in
order to avoid out-of-gamut R’G’B’ values). The edgemap
filtering method was labelled ‘lummsk’ while the wavelet
thresholding method was labelled ‘lumthr’. The images
produced by both of these methods exhibited color speck-
ling artifacts which gave them an unsatisfactory appear-
ance.

Denoising performance was also measured quantita-
tively. Figure 5 shows the results in graphical form. Perfor-
mance was quantified using signal-to-noise ratio improve-
ment (SNRI) which measures ������ � �����.

The SNRI data graphed in Figure 5 reveal that compo-
nent separable wavelet thresholding (‘septhr’) consistently
outperformed the other approaches in terms of SNRI. This
is consistent with wavelet thresholding’s theoretical prop-
erties, but bears little witness to the blurry visual quality of
wavelet thresholding outputs (cf. Figures 6c and 6f). The
data also shows that multiscale edgemap filtering (‘clrmsk’)
delivered strong SNRI performance in all of the images
that were tested.
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Figure 5. Graphical depiction of ���� denoising results.

Perhaps the most startling aspect of Figure 5 is the fact
is that all of the luminance-based tests exhibited negative
or near-zero SNRI values.� This suggests that luminance-
based denoising algorithms generally introduce more noise
than they suppress. When it comes to suppressing strong
additive Gaussian noise from color images, one is better
off using algorithms that process all of the components of
a color image.

Edge Sharpening Example

As a second example of edge map filtering, we show how
“edge likelihood” masks can be used to sharpen color im-
age edges. The sharpening of color image edges has also
been addressed in a multiscale setting by Kotera et al.�� �

Here, instead of using edge likelihood masks to attenu-
ate noise related edges, we use the masks to amplify edges
that are considered to be physically significant. This is
accomplished by once again employing edge likelihood
masks, ��� �����, as multiplicative masks. This time how-
ever, we incorporate a scale factor, �, which specifies the
amount by which edges are to be boosted.

Multiscale edge sharpening is accomplished by the fol-
lowing filtering operation

���
������� � ��� �������������

���
������� � ���������������� (8)
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As before, the filtering is restricted to the two finest scales
of analysis and does not affect angle or coarse image data
(these are left unfiltered). The processing also uses edge
likelihood masks directly, without squaring, so that all edges
are boosted evenly. An edge enhanced color image is ob-
tained by substituting the filtered modulus edgemaps into

�n.b. previously reported�� lummsk data are anomalous.
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the color image’s original WTMM data, then synthesiz-
ing new color component images from the filtered WTMM
data.

Experimental Results

Figure 7 shows the effect that multiscale edge sharpening
(8) has on noise free color images. Both results were pro-
duced using � � �. The enhanced images exhibit strong
contrast with pronounced object outlines in a fashion that
resembles unsharp masking.

Luminance-based processing is also possible, and of-
fers computational savings. Tests of a luminance-based
version of equation (8) showed that it delivered results that
were similar to those obtained using (8) directly. Thus,
luminance-based processing appears to have merit in the
case of multiscale edge sharpening.

The filtering strategy of (8) provides edge sharpening
along with a modest degree of noise filtering. Tests on
noisy color images revealed that it is not entirely effective
at performing both tasks at once. This remains an area
warranting further investigation.

Conclusion

The components of a color image exhibit unique corre-
spondences that can be exploited for color image enhance-
ment. This report has presented a framework for taking
advantage of edge related correspondences.

The proposed approach is based on a multiscale edge
analysis and utilizes the interdependencies that exist be-
tween color component edgemaps. These interdependen-
cies provide a relatively simple means of locating and gaug-
ing physically significant edges at specific scales of analy-
sis, as stored in so called “edge likelihood” masks.

Two examples have demonstrated the capabilities of
the proposed framework. The first example showed how
multiscale edge filtering can be used to suppress noise in
color images. This approach does a good job of main-
taining image details, and offers SNR performance that is
comparable to wavelet thresholding. This is significant for
wavelet thresholding is known to deliver nearly optimum
SNR performance but tends to produce blurred results. A
second example showed how multiscale edge scaling can
be used to sharpen color image edges.

The examples presented here use strictly edge magni-
tude information and cross-component interdependencies.
Future work can build upon these methods by using edge
angle information, exploiting across-scale interdependen-
cies, and examining alternate color spaces as well.

References

1. J. Adams and K. Spaulding, Noise cleaning digital cam-
era images to improve color fidelity capabilities, Proc.
of IS&T/SID 7th Color Imaging Conference, pp. 197-199
(1999).

2. D. Donoho, I. Johnstone, G. Kerkyacharian, and D. Picard,
Wavelet shrinkage: asymptopia?, J. Royal Statistical Society
B, vol. 57, pp. 301–369 (1995).

3. H. Kotera, Y. Yamada, and K. Shimo, Sharpness improve-
ment adaptive to edge strength of color image, Proc. of
IS&T/SID 8th Color Imaging Conference, pp. 149–154
(2000).

4. H. Kotera and W. Hui, Multi-scale image sharpening with
background noise suppression, Proc. of IS&T/SID 10th
Color Imaging Conference, pp. 196–201 (2002).

5. S. Mallat and S. Zhong, Characterization of signals from
multiscale edges, IEEE Trans. Patt. Analysis and Machine
Intell., vol. 14, pp. 710–732 (1992).

6. S. Mallat, A Wavelet Tour of Signal Processing, 2nd ed.,
Chesnut Hill, MA: Academic Press, 1999.

7. D. Marr, Vision: A Computational Investigation into the Hu-
man Representation and Processing of Visual Information.
San Francisco: W. H. Freeman, 1982.

8. P. Scheunders, Wavelet-based enhancement and denoising
using multiscale structure tensor, Proc. Intl. Conf. Image
Processing, vol.3, pp. 569–572 (2002).

9. B. Thomas and R. Strickland, A study of scene structure
in the saturation component of color images, in Recent
Progress in Color Science, IS&T, Springfield, VA, 1997,
pp. 274–280.

10. B. Thomas, New Aspects of Digital Color Image Enhance-
ment. Ph.D. dissertation, University of Arizona, 1999.

11. B. Thomas, Wavelet-based color image denoising, Proc. Intl.
Conf. Image Processing, vol.2, pp. 804–807 (2000).

Biography

Bruce Thomas holds degrees in electrical engineering from
Cal Poly, San Luis Obispo (B.S.E.L.), Carnegie Mellon
(M.S.E.E.) and the University of Arizona (Ph.D.) with an
emphasis on optics and color image processing. He has
a lifelong interest in photography, visual perception, and
color, and has participated in the development of color
pre-press and digital camera/imaging systems at DuPont,
SuperMac Technology and Sierra Imaging. He is currently
an industry consultant.

IS&T/SID Eleventh Color Imaging Conference

98



(a) original image (b) ‘clrmsk’ output (c) ‘septhr’ output

(d) original image (e) ‘clrmsk’ output (f) ‘septhr’ output

Figure 6. Examples of color image noise suppression. ‘clrmsk’ designates multiscale edgemap filtering per eqn. (7). ‘septhr’ designates
component separable wavelet thresholding. (all images are originally in color).

(a) original image (b) edge enhanced image

(c) original image (d) edge enhanced image

Figure 7. Examples of color image edge sharpening produced by multiscale edge scaling, eqn. (8). (all images are originally in color).
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