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Abstract

We propose several new reflection component based color
similarity measures and report on the results of an evalu-
ation of their class separation ability, for which more than
50 test images (for facial skin color classification) have
been used. It was found that two of the proposed color
similarity measures (S13 and S14) are superior.

1. Introduction

Color is a major source of visual information. It plays
an important role in image retrieval [1, 2], image region
segmentation [4, 3], and image based object tracking and
recognition [5, 2, 3]. In these processes the major use of
color is as a feature in color classification and determina-
tion of regions of homogeneous color. Since the essence of
these processes is the forming of groups of pixels of simi-
lar color, the concept of color similarity is important. The
implementation of this concept as a computational method
leads us to the definition of color similarity measures (or
CSMs, for short).

Many CSMs have been defined, and most of these def-
initions are based on the notion that a color is represented
as a point (or vector) in a color space and that the similarity
between two colors can be computed with these two color
vectors as input. [8] However, if we want to apply CSMs
to photographs and digital images of real scenes, CSM def-
initions based on the color point notion are no longer ade-
quate, because the properties of the reflecting surfaces are
neglected.

Reflections from surfaces of inhomogeneous dielectric
materials can be described by the dichromatic reflection
model, which states that reflections consist of two compo-
nents, one due to diffuse reflection and the other due to
specular reflection. [6, 7] When the reflections are picked
up by sensor systems that integrate the visual spectrum
over a finite number of separate spectral bands, the color
of each pixel can be represented as a point in a finite-
dimensional color space. The color points due to all pix-
els of an uniformly colored surface form two distinct clus-
ters in the color space, one of them representing the dif-
fuse reflection component and the other one representing
the specular reflection component. Thus, color similarity
in this case is not a matter of similarity between pairs of

color points, but rather a matter of similarity between pairs
of color point clusters, and color similarity measures must
be defined accordingly.

Defining CSMs which are able to account for both the
diffuse and specular reflection components, and applying
them to general imagery is complicated. In order to sim-
plify matters, we could define CSMs which determine sim-
ilarity only between the diffuse reflection components. This
seems justified because the characteristic ”body” color of
surfaces is mediated through the diffuse reflection com-
ponent, whereas the specular reflection component only
mediates the color of the illuminant, and for classification
tasks we are mainly interested in finding matches between
body colors.

In the main part of this paper we first show that ex-
isting CSMs are not adequate for computing diffuse re-
flection component based color similarity and we propose
several new diffuse reflection component based color sim-
ilarity measures. We report on evaluation results regarding
the class separation ability of these CSMs, which were ob-
tained from an experiment involving more than fifty test
images used for solving a human (facial) skin color classi-
fication task. The test images depict real-world scenes shot
with CCD cameras at a wide variety of outdoor and indoor
locations.

2. Existing color similarity measures

One of the properties of diffuse reflection component based
CSMs is their independence of the colors’ brightness val-
ues. That is, when computing the color similarity between
a given reference color and a set of colors sampled from
a homogeneously colored surface on which the luminance
of surface points varies with the points’ locations, a diffuse
reflection based CSM will return the same similarity value
for all points on that surface. CSMs with this property do
already exist and are described in the literature [8]. Three
such CSMs are defined as follows:

Measure 1

S1 =
xi · xj

‖ xi ‖ · ‖ xj ‖ = cos (θ) (1)

where θ is the angle between vectors xi and xj .
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Measure 3

S3 =
‖ xi ‖ cos (θ) + ‖ xj ‖ cos (θ)

(‖ xi ‖2 + ‖ xj ‖2 +2 ‖ xi ‖‖ xj ‖ cos (θ))
1
2

(2)
Measure 4

S4 =
cos (θ)

(‖ xi ‖2 + ‖ xj ‖2 +2 ‖ xi ‖‖ xj ‖ cos (θ)
) 1

2

‖ xi ‖ + ‖ xj ‖
(3)

These CSMs take two color vectors as input and com-
pute a real number in the range (0.0, 1.0), where value 1.0
indicates “identical” and “0.0” is synonymous with “not
similar at all.” They are represented as functions Sk(xi,xj),
where xi,xj are the two p-dimensional color vectors. 1

The above formulae are all given for p-dimensional
color vectors; i.e., they are not limited to the three spectral
channels implemented in most contemporary CCD cam-
eras. The components of these vectors are obtained by
integrating filtered reflection spectra over the visual wave-
length range such as

xik =
∫ λ2

λ1

E(λ)S(λ)Fk(λ)dλ (4)

where E(λ): illumination, S(λ): spectral reflectance func-
tion, Fk(λ): k-th filter function, (λ1, λ2): range of visual
spectrum wavelengths, and
xi = (xi1 xi2 ... xik)T : the i-th color vector. How-
ever, since practically all commercially available cameras
come with the three (R,G,B) channels, we carry out all ex-
periments in this paper for the RGB color space.

Color is a vector-valued signal of at least three dimen-
sions, whereas the feature being generated through the ap-
plication of color similarity measures is a scalar. Thus,
color similarity measures implement a mapping from the
p-dimensional color space to a one-dimensional (scalar)
space. Given a reference color, a CSM assigns a scalar
value between 0 and 1 to all other colors of the color space;
in this way CSMs superimpose a scalar field on the color
space, the structure of which depends on the reference color
and the mathematical definition of the CSMs. It is im-
portant to realize that some mathematical formulations of
CSMs are superior in terms of class separation ability.

The spatial structure of CSMs can be made explicit
by computing (hyper-) surfaces of constant similarity with
respect to the reference color, and conclusions about the
properties of CSMs can be drawn by examining the size
and form of such surfaces. The diagram of the constant-
similarity surface for the S1–CSM is shown in Fig.1. This
diagram was computed by setting the reference color to

1Note that the arguments (xi,xj ) are skipped in the formulae shown
above and later on. Also note that the numbering of the measures is shown
in accordance with the numbering used in [9, 10].

xi = (128 128 0)T (i.e. pure yellow of medium bright-
ness) and searching for all colors xj that satisfy 0.80 ≤
Sk(xi,xj) ≤ 0.81. The obtained color points then were
linked by straight line segments and displayed as a surface.
The constant-similarity surfaces for the S3– and S4–CSMs
are very similar.

This diagram shows that the extent over color space of
the constant-similarity surfaces of the three CSMs is very
wide. Due to this “low compactness”, the measures S1, S3

and S4 are unlikely to perform well in the context of color
classification tasks.
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Figure 1: Constant similarity surface for S 1 = 0.8

3. Reflection component based color
similarity measures

Since the three existing diffuse reflection component based
CSMs lack compactness, better CSMs need to be defined.

3.1. A new set of diffuse reflection component based
CSMs

In this section we propose and analyze a set of diffuse re-
flection component based CSMs which are more compact
than the three existing measures. The proposals for these
measures are as follows:

Measure 13

S13 = 1 − β arccos
(

xi · xj

‖xi‖ · ‖xj‖
)

(5)

where β > 0 and ((S13 < 0) ⇒ (S13 = 0)). β = 2
π

is the special case where the largest possible angular
difference would give a color similarity value of 0.

Measure 14

S14 = exp
(
−β

[
1 − xi · xj

‖xi‖ · ‖xj‖
])

(6)

where β > 0.
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(a) S13
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(b) S14
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(c) S15
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(d) S16

"S17.dat"

0
50

100
150

200
250 0

50

100

150

200

250

0

50

100

150

200

250

(e) S17
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(f) S18
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(g) S19

Figure 2: Surfaces of similarity s = 0.80 for similarity measures S 13, S14, S15 and S16. (Surface for S15 is shown larger.)

Measure 15

S15 = exp

(
−β

p−1∑
k=1

∣∣∣∣xik

Ti
− xjk

Tj

∣∣∣∣
)

(7)

where β > 0 and Ti = 1
p

∑p
k=1 xik.

Measure 16

S16 = exp

(
−β

∥∥∥∥∥xi · xj

x2
j

· xj − xi

∥∥∥∥∥
)

(8)

where β > 0.

Measure 17

S17 = 1 − β

∥∥∥∥∥xi · xj

x2
j

· xj − xi

∥∥∥∥∥ (9)

where β > 0 and ((S17 < 0) ⇒ (S17 = 0)).

Measure 18

S18 =




exp
(
−β1

[
1 − xi·xj

‖xi‖·‖xj‖
])

, ‖xi‖ < T

exp
(
−β2

∥∥∥xi·xj

x2
j

· xj − xi

∥∥∥) , ‖xi‖ ≥ T

(10)

Measure 19

S19 = exp
(
−β arccos

(
xi · xj

‖xi‖ · ‖xj‖
))

(11)
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where β > 0.

Figure 2 shows examples of constant similarity sur-
faces for similarity value S = 0.8 for all diffuse reflection
component based CSMs proposed in this section.

S13 is a measure which computes the angle between
the reference color and test color vectors in radians, scales
it and subtracts the result from 1. S14 first subtracts the co-
sine of the angle between reference and test color vectors
from 1 and uses the negated value as the argument of an
exponential function. 2 The constant–similarity surfaces
of both functions have the shape of cones, with vertices
located at the origin of the color space coordinate system
(see Fig.2(a) and (b)).

For S15, first the chromaticity of both reference and
test colors is computed by normalizing the color vectors
with the colors’ brightness values, and then the resulting
(p − 1)–dimensional vectors are used in the exponential
function definition of S8 . [9, 10] The constant–similarity
surface of this CSM turns out to have a complicated, irreg-
ular structure with many discontinuities (see Fig.2(c)).

Instead of CSMs with cone–shaped constant–similarity
surfaces, CSMs with pipe–shaped constant–similarity sur-
faces can be defined; S16 and S17 are such measures, with
the pipe of S16 having a rectangular cross–section and that
of S17 having a circular cross–section. For these CSMs it
must be kept in mind that xi represents the reference color.
The direction of the pipe is determined by the direction of
the straight line through the reference color and the coor-
dinate origin.

S18 is a combination of S14 and S16. Its constant–
similarity surface is cone–shaped for dark colors and pipe–
shaped for bright colors. The switching brightness can be
selected by setting the value of parameter T .

S19 is a measure which computes the angle between
the reference color and test color vectors and uses it as the
argument of the exponential function.

3.2. Selection of parameter β

All proposed reflection component based CSMs include a
parameter β, the value of which should be selected such as
to achieve optimal color separation of classes: Assuming
only two color classes, the regions covered by these classes
are manually extracted from several test images and the
mean similarity between the color of class 1, m1 (i.e. the
reference color) and that of class 2, m2, is computed for a
range of β–values. The differences ∆m = m1 − m2 as
a function of the β–values can be shown to have a unique
maximum, at which the optimal value for β is determined.
The optimal values of β for each reflection component
based CSM, obtained experimentally from real-world test
images, are as follows: S13: 3.5, S14: 50.0, S15: 12.0, S16:
0.02, S17: 0.02, S18: 0.02 and 15.0, S19: 6.0.

2Note that the exponential function was chosen because of the good
results obtained for the point–type CSM S8 reported in [9, 10].

4. Performance of reflection component
based CSMs

4.1. Perceptual feature difference properties of CSM

Color similarity measures should be able to account for
differences in the perceptual features hue, saturation and
brightness in a balanced way. The functional relationship
between differences in perceptual color feature values and
color similarity values should be one-to-one and mono-
tonic, and a reasonable value range of each of the percep-
tual features should map to the full range of color similar-
ity values.

In order to examine the behavior of the CSMs with re-
spect to saturation and hue changes, two sets of color vec-
tors that are optimized for wide variation of saturation and
hue values, respectively, were used as test data. Since dif-
fuse reflection component based CSMs are insensitive to
the brightness of a color, only results for saturation and
hue are shown in Fig.3. The results of these tests can be
summarized as follows:

• Saturation:

1. The function Sk(∆Sat) is neither 1-to-1 nor
monotonic, but it maps the full range. This is
true for S13, S14, S16, S18 and S19. An exam-
ple is shown in Fig.3(a).

2. The function Sk(∆Sat) is 1-to-1, monotonic,
and maps the full range. This is true for only
S15 and S17. An example is shown in Fig.3(c).

• Hue:

1. Function Sk(∆H) is neither 1-to-1 nor mono-
tonic, but it maps the full range. This is true
for only S15 (see Fig.3(d)).

2. Function Sk(∆H) is 1-to-1, monotonic, and
maps full range. This is true for S13, S14, S16,
S17, S18 and S19. An example is shown in
Fig.3(b).

All tested CSMs have quite similar behavior with re-
spect to changes in saturation and hue. Measure S17 is
closest to being ideal, and measure S16 has good proper-
ties, too.

4.2. Test results for class separation ability

A CSM is efficient in color classification tasks, if it has a
good ability to separate color classes. More concretely, the
mean similarity value S̄m(i) in the image region of the i-th
class and the mean color similarity value in the regions of
other classes S̄m(j) is required to differ as much as pos-
sible. That is, CSM Sk should be selected such that the
difference

S̄k(i) − S̄k(j), i �= j, ∀k (12)
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(a) S14 vs. Saturation differ-
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(b) S14 vs. Hue difference

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

Saturation difference

S
15

−
si

m
ila

rit
y

(c) S15 vs. Saturation differ-
ence
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(d) S15 vs. Hue difference

Figure 3: Typical examples of Similarity versus Saturation differ-
ence.

is maximized, where k is the index identifying the CSMs.

In order to test the various color similarity measures
with respect to their ability to separate color classes, we
took a set of photographs of human faces with three types
of CCD cameras (Sony XC003, Fujifilm FinePix 6900Z,
Fujifilm Finepix 50i) and used them as test images in an
experiment of human skin color classification. The test
set included 55 images, taken in urban as well as natural
outdoor environments, and office as well as private home
indoor environments. Most images depict Asian nationals,
and a few portray Europeans. All age groups are repre-
sented. The lighting conditions have not been controlled.
Some sample images are shown in Fig.4.

Figure 4: Examples of some of the face images used in the test.

During the camera calibration stage, it was found that
the transfer functions of the Fujifilm FinePix cameras were
biased with approximately γ = 2.0. Consequently, all
images taken by these cameras had to be corrected by a
gamma–correction transformation applied to all three color
components. This transformation was carried out such that
no hue distortions occurred. The resulting images had prop-
erties as if they had been taken by cameras with linear
transfer functions.

The facial skin regions were manually extracted from
all 55 test images and saved as reference. The mean skin
color of these reference regions were computed for each
image and used as the skin reference color for the CSM.
The similarity between this skin reference color and the
colors of a given test image was computed at each pixel
and for all diffuse reflection component based CSMs. Then,
for each similarity image, the difference between mean
similarities in the skin region, m1, and in the non–skin re-
gion, m2, were computed as ∆m = |m1 − m2|. These
results are shown in the diagram of Fig.5.
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Figure 5: Difference of mean similarity, (m2 − m1), between
face region and non-face region, for all color similarity measures
and all test images. (Numbering on abscissa has the following
meaning: 1 → S1, 2 → S3, 3 → S4, 4 → S13, 5 → S14,
6 → S15, 7 → S16, 8 → S17, 9 → S18, 10 → S19.)

Fig.5 represents the graph for ∆S versus CSM ID num-
ber for all 55 test images. The difference in average sim-
ilarity value between the skin region and other regions is
clearly largest for measures S13 and S14, followed by mea-
sures S15, S19, S18, S17, and S16. The lowest differences
are recorded for measures S1, S3 and S4, which are the
three CSMs included in the old set of color similarity mea-
sures. These data show that based on similarity values
computed with S13 and S14, facial skin color pixels can
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be classified most efficiently. The high quality of the S14

measure is also obvious in the example of Fig.6.

(a) Original image. (b) S14 similarity image.

Figure 6: Similarity image for facial skin color (gray–value is
shown proportional to similarity value).

4.3. Summary of results

With the exception of S15, all proposed diffuse reflection
component based CSMs are compact; S15 does not have
smooth constant–similarity surfaces.

Regarding the behavior with respect to changes in sat-
uration and hue, measures S16 and S17 are closest to being
ideal, but the deviation of the other proposed CSMs from
ideal behavior is only minor.

The test results for the CSMs’ ability to separate color
classes indicate that skin color pixels can be classified best
when computation is based on S13 and S14. It should be
recalled that these two CSMs form cone–shaped constant–
similarity surfaces in RGB color space, and the fact that
they have the best ability to separate skin color from other
colors is hardly surprising when considering that the distri-
bution of skin colors in RGB color space is roughly cone–
shaped, too. Since for S13 and S14 the similarity value dif-
ference exceeds 0.5, separation of skin color regions from
non-skin color regions is easily achieved by discriminating
the colors at an appropriately chosen similarity threshold
value.

5. Conclusion

In this article we proposed several new color similarity
measures for classifying colors that occur due to light re-
flection on object surfaces of the inhomogeneous dielectric
materials type. The proposed measures are able to capture
the similarity between the diffuse reflection components of
colors. The results of an evaluation of the class separation
ability of the diffuse reflection component based measures
using more than 50 test images showed that the measures
S13 and S14 perform best. The functional properties of

all of these measures with respect to brightness, saturation
and hue changes were found to be good.
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