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Abstract

Contrast is the well-known observation in which a gray
in a white surround appears darker than in a black one.
An example is a 32 by 32 pixel gray area subtending 0.75
degrees visual angle on a black background - 256 pixels
on a side. The gray appears darker when surrounded by a
band of white - 12 pixels wide.  The white band is made
up of 2112 individual white pixels.  If these white pixels
are redistributed uniformly in the black background the
gray appears much lighter.  This paper measures the gray
appearance as influenced by 2112 white pixels in 27 dif-
ferent spatial configurations.  The set of different spatial
patterns of white pixels that generate the same matching
lightness for gray are defined as equivalent backgrounds.
The paper then analyzes the spatial properties of equiva-
lent backgrounds.  Gray appears darkest when the solid
white surrounds the gray and is contiguous with it.   In
the case of the distributed white pixels, the gray appears
lighter.  This paper presents an analysis of the spatial prop-
erties of intermediate surrounds that give the gray center
equal visual appearances.

Introduction

Spatial processing in human vision makes identical reti-
nal stimuli appear different.1-5   Different spatial configu-
rations of surrounds can make substantial changes in ap-
pearance.  The goal of this paper is to measure the ap-
pearances of a wide range of different spatial arrange-
ments of an identical set of pixels.  By comparing the
results of observer matches, we can identify different pat-
terns of surround that have the same effect of the human
spatial processing mechanism, namely the observers pick
the same match.   Patterns that generate equal matches
for the constant gray patch are defined as equivalent back-
grounds.

Sets of displays having equivalent backgrounds can
be used for analyzing different spatial models of vision.2,6-

25   A model that mimics the human visual process will be
able to correctly predict which spatial patterns  are equiva-
lent and will appear the same.

Experimental Procedure

Experiments have shown that distance from a white and
enclosure by a white changes the appearance of grays as
much as one third the range of white to black.26 ,27   Size
on the retina and spatial pattern can change similar pat-
terns from observer reports of contrast to reports of as-
similation.28-29  This paper reports experiments using 27
different spatial patterns all composed of a central test
patch (made up of 1024 light-gray pixels) on a background
(made up of 2112 white pixels, 62,400 black pixels).
These targets were computer generated and displayed on
a CRT monitor which was viewed at a distance of 38
inches.  The square gray center element subtended 0.75°
and the entire 256 by 256 display subtended  5.9°.  The
rest of the monitor screen was covered with opaque ma-
terial in a darkened room.  Observer matches were made
using a paper Munsell chart with samples every 0.25
Munsell Value.  This matching target was placed in front
of the observer in an opaque box, so that no light illumi-
nating the standard papers fell on the computer monitor.
The observer looked down to see the matching Munsell
Value target and looked up to see the test display.  The
data described here show results for a minimum of four
observations for one of the observers.  The average de-
viation for this observer for all fifty displays including
controls was 0.28 Munsell Value units; the maximum
deviation was 0.55 units; the minimum deviation was 0.0.

Controls

Figures 1 and 2 illustrate two control experiments.  In
this paper the only observer task was to find a match in
the Munsell Value scale for the central gray square patch.
The first control patch varied the pixel value of the gray
patch in a white surround (pixel value 255). The second
control experiment used pixel value 140 for the gray patch
and varied the value of the uniform surround.

Obviously, when the experimenter decreased the digi-
tal value of the central patch the observer matched it to a
darker Munsell Value.  The experimenters chose the con-
stant gray central patch stimulus (digital value 140) for
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Figure 1 demonstrates the change in lightness with luminance of the central test square in a uniform white surround.

Figure 2 demonstrates the change in lightness with luminance of the surround around a constant test square.

Figure 3a shows a series of  6 "Snow" displays made of the same pixel elements.  Each display has been enlarged to
see the one-pixel whites.  Only half is shown here to conserve space.  They all have a central patch that is 32 by 32
pixels with a constant pixel value of 140.  They all have a black background of 62,400 pixels (value 0).  They all have
a white surround of 2112 pixels (value 255).  Top: The first display on the left has 12 rectangular bands of white
adjacent to the gray test patch.  The zone surrounding the test patch has a 1/1 white pixel fraction.  In the second
display the adjacent zone has a 1/2 white pixel fraction.  The zone is a checkerboard of black and white pixels.  In the
third display, the adjacent zone has a 1/4 white pixel fraction.  Bottom: In the fourth display, the adjacent zone has a 1/
9 white pixel fraction.  In the fifth and sixth displays, the adjacent zone has 1/16 and 1/25 white pixel fractions.

Figure 3b plots matching Munsell Values for patches in
Figure 3a.  The solid white adjacent to the gray test patch
is matched by 6.50±0.39, while the 1/25 white pixel
fraction was matched by 7.85±0.49.  All displays have
identical global average  or "GrayWorld" value.

the surround experiment. With a white surround (digital
value 255), the observer match was 5.19±0.44.  With
darker surrounds the observer matched lighter Munsell
Values.  Below digit 100 matches reached an asymptote
of Munsell Value 8.0.  The surround can influence the
observer  choice of match over one-third of the range from
white to black.

Dispersion of White ("Snow")

Figure 3 shows the beginning of the series of constant
average displays.  The target on the left has a 32 by 32
pixel central gray patch (digit value 140).  It is surrounded
by a 12 pixel band of white.  The rest of the target is
black.  The observer match was 6.50±0.39.   The second
target rearranges the 2112 white pixels into a checker-
board pattern; every other pixel is white or black.  The
third target has 1 white pixel and three black pixels; the
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Figure 4c plots the matching Munsell Value for the test
patches in Figure 4a and 4b.  When the solid white squares
are adjacent to the corners of gray test patch, it was
matched by 6.50±0.20.  When separated by 64 pixels it
was matched by 7.75±0.35.  All displays have identical
global average value.  When the solid white squares are
adjacent to the sides of gray test patch, it was matched by
6.13±0.43.  When separated by 64 pixels it was matched
by 7.25±0.46.  All displays have identical global averages.

Figure 4a shows effects of relocating the 2112 white pixels on the diagonals of  the display.  Here the white pixels are
shaped into four squares.

Figure 5a shows the effects of relocating the 2112 white pixels into parallel stripes with variable spacing.

fourth has one white pixel and 8 black pixels; the fifth has
one white pixel and 15 black pixels; the sixth has one
white pixel and 24 black pixels.  The series began with a
solid band of white and progressively diffused the white
pixels.  The effect on matches was to make them lighter.
Figure 3b plots the Munsell Value for the targets in Fig-
ure 3a.

Corners and Sides

Figure 4 continues the series of constant average displays.
The target on the left has the same 32 by 32 pixel central
gray patch (digit value 140).  In Figure 4a the 2112 white
pixels form four squares on the diagonal of the target, while
in Figure 4b the squares are adjacent to the sides of the
gray.   In the first target the white is adjacent to the gray.
In the second through fifth the white is separated by 4, 8,
16, 32, and 64 pixels.    The effect of separating the white
squares from the gray patch was that matches were lighter.

Figure 4c plots the Munsell Value for the targets in
Figure 4a and 4b.  The sides have greater influence than
the corners for the same separation from 0 to 8 pixels,
namely the observer matches are darker.  At a separation
of 16 pixels the match for side and corner are identical.
At greater separations the sides have darker matches.

Lines

Figure 5  continues the series of constant average displays.
The target on the left has the same 32 by 32 pixel central
gray patch (digit value 140).  In Figure 5a the 2112 white
pixels form lines parallel to the sides of the gray square.
In the first target, the white is a solid band as in figure 3.
In the second through fourth targets the white lines are

separated by 1, 3, 7 black pixel lines (2,4,8 pixels per
cycle).      The effect of separating the white lines was that
matches were lighter.  Figure 5b plots the Munsell Value
for the targets in Figure 5a.  In addition, data from two
other targets is  plotted.  The fifth display took the 8 pixel
per cycle pattern and moved it 8 pixels from the gray.
The sixth target used a vertical 8 pixels per cycle and an
horizontal 2 pixels per cycle pattern.

Figure 4b shows effects of relocating the 2112 white pixels in squares on the sides of the gray test patch.
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Equivalent Background

The range of observer matches for the 27 patterns with
identical white gray and black pixel counts is from 7.85
to 5.19.  This  is 2.6 lightness units on a scale in which
white is 9.6 and black is 1.5.  Hence the surround with
identical average statistics can manipulate the matching
lightness one-third of the range between white and black.

One of the goals of this paper is to understand the
underlying mechanisms of the large changes in appear-
ance.  Obviously, the spatial pattern of the white pixels is
controlling the appearance.  The mechanism, however, is
not at all obvious.  Figure 6a displays the set of different
surrounds that generated Munsell matches of 7.0.  In the
control experiments, the digital value 199 (84%max lu-
minance) in a white surround matches Munsell 7.0.  With
the gray set to 140,  the surround digital value of 173
(76%max luminance) generates Munsell 7.0.

In the constant average statistic targets the following
targets have Munsell matches of 7.0:

A single white square of 2112 white pixels (1 side)
A dispersion fraction of 1/2
A corner square with 16 pixel separation
A side square pattern with 16 pixel separation
A line pattern of 8 pixels per cycle
A line pattern of 8 vert. and 2 horiz. pixels per cycle

Figure 5b plots the Matching Munsell Value for the test
patches in Figure 5a.  When the solid white surround was
adjacent to the  gray test patch, it was matched by
5.64±0.39.  When the white was broken up into alternating
black and white stripes with 2, 4 and 8 pixels per cycle,
the matches were 6.31±0.24, 6.81±0,43, and 7.00±0.35.
When the 8 pixel per cycle pattern was moved 8 pixels
away from the gray test patch, the match increased to
7.44±0.13.  When the display was 2 pixels per cycle
vertically and 8 pixels per cycle horizontally the match
was 6.88±0.14.   All displays have identical global average
value.

Figure 6a shows eight different displays with Matching Munsell Value = 7.0.  The top left shows that in a white
surround the central test patch that matched by 7.0 had a digital value of 199 (84%max luminance).  In all other
displays the gray test patch had a digital value of 140 with 2112 white pixels on 62,400 black pixel background.  The
asymmetrical square of white,  the 1/2 dispersion fraction, the 16 pixel corners and sides separations, the 8 pixel cycle
of stripes and the 8 vertical and 2 horizontal stripe patterns all acted as equivalent surrounds.  They all made the 140
pixel value gray central patch match 7.0 Munsell Value.  In an all-white surround the gray central test area (digital
value 140) was matched by  a  lightness of 4.94±0.43, while in an all black surround it was matched by 7.59±0.60.  The
bottom row shows plots of the spatial frequency spectra of the five displays in the middle row of Figure 6a.
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Figure 7 plots the "GrayWorld" global average for all
displays vs. Matching Munsell Lightness.  Here the digital
values have been converted to average luminance.  All
displays have the same pixel  composition and  global
average value.  Observer matches vary for a high of 7.85
to a low of 5.19.  Global average is not a good predictor
of matching lightness.

The computational model candidates are:
Frameworks with depth planes and illuminants
GrayWorld
Spatial frequency filter models using single MTF
Multichannel spatial frequency models
Pyramid processing

It is difficult to calculate  meaningful cognitive frame-
works for either illumination or depth planes for these
displays.  The ideal model is one that only requires the
array of pixel data, without additional interpretation of
image segments.  It is difficult to imagine the framework
that controls variable lightness from the concentration of
Snow.  It is easy to see that global models would be un-
able to correctly predict the results of these experiments,
e.g., GrayWorld - using the average of all luminances
(Figure 7), or global maximum - normalizing by the single
maximum value pixel in the entire image.

Further, a simple model employing a single filtration
of spatial frequency energy distributions will not account
for observer data. The bottom row in Figure 6 shows spa-
tial frequency spectra of the middle row of targets. It is
not obvious how a single filter will transform these in-
puts to equal outputs.

Results

Figure 8 shows the average values computed using very
simple boxcar averages of the average local luminance
Instead of GrayWorld we looked to GraySuburb averages.
Figure 8a shows the average local luminance when vary-
ing the size of average for a single display (top) and vary-

Figure 8a  shows the results of different partial spatial averages.  The first row reports different size averages for the 1
of 2 checkerboard surrounds.  All averages included one of the four center gray pixels. The left box shows that the 4 x4
pixel average  is 15.4% maximum luminance, followed by 8x8 average is 15.4%; 16x16 is 15.4%; 32 x 32 = 42.7%
64x64 = 15.8% and 128x128 = 5.6%.  The second row reports different displays using only the 32x32 pixel average.  All
averages included one of the four center gray pixels. The left box shows that the 2112 solid display average = 56.6%;
1 of 2 display = 42.7%; 1 of 4 = 24.1%; 1 of 9=14.8% 1 of 16 = 10.1% and 1 of 25 = 8.1%.

Equivalent background patterns provide a challenge
to spatial models of vision.  Namely, models that are de-
signed to calculate the appearance of lightness need to
generate identical predictions for the central gray patch
from these diverse spatial input targets.

IS&T/SID Eleventh Color Imaging Conference

55



\
Figure 8b plots all sizes of local average for all "Snow" displays .  This plot shows that the biggest differences in local
averages are found in the 32 by 32  sample.  The average value from smaller sizes is dominated by the central gray. The
average value of the larger sizes is dominated by the large black background.

Figure 9a plots the 32x32 pixel average vs. matching
lightness  for the Snow targets,  along with  the "all white"
and "all black" backgrounds.  The black vertical line
shows the 15.4% average luminance of the gray center.
When the average value is greater than 15.4% the
matching lightness falls quickly with 32x32 average
luminances.  Below 15.4% a lower slope is observed.

Figure 9b plots the 32x32 pixel average vs. matching
lightness  for all the other targets.  Diamonds plot the
"Snow" displays;  triangles plot the constant gray center
with uniform gray surround (see Figure 2); circles plot
all of  the remaining constant global average displays.
The vertical error bars plot one standard deviation of the
mean of observer matches.  There is no significant
difference between the plots of "Snow" and uniform gray
surround.  Although the observer saw all the individual
white pixels, the match for the gray center was the same
as a uniform gray with the same 32 x32 spatial average.
The remaining data(circles) are very similar, but slightly
darker than the diamonds and triangles.  This suggests
that 32x32 pixel averages can  be used to account for
most, but not all of the  other data.  Clearly these displays
have different values in the 64x64 pixel averages.
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ing the same size of average on various displays (bot-
tom).  The average values show considerable variability
despite the uniformity of the global statistic. Figure 8b
shows that marked differences in spatial averages are
found only in same sizes of averages.

Figure 9 plots the local average for all displays and
all sizes of average.  The largest variability is in the 32x32
pixel averages.  In other words, the snow displays have
the most differentiable signal in the averages that are the
same size as the central square.  Smaller  averages are
dominated by the gray scale itself, while larger ones are
dominated by the very large black surround.

Plots of matching lightness vs. average 32x32 lumi-
nance show a characteristic curve (Figure 9a).  Of special
interest is the fact that the plot of uniform grays fall on
that same curve (Figure 9b).  Furthermore, plots of all the
other displays fall just below the Snow and uniform back-
ground data.  This indicates that the 32x32 average shows
high, but not perfect correlation with observer matches.
These corners, lines and sides displays have different av-
erage signatures in the 64x64 displays and this may cor-
relate with the darker matches.

Discussion

The design of these experiments was the collection of data
for future use in designing models.  The intent was to
extend our understanding of how white pixels influence
appearance. Whites have been assigned many different
roles by frameworks, global normalization, determinants
of illuminants, etc.  These experiments go a long way to
indicate that spatial average in the same spatial frequency
range as the region of interest have an important role in
computational models of lightness.  They also show that
Snow and uniform backgrounds have an indistinguish-
able effect on the lightness of a 32x32 gray area.  Despite
the visibility of the discrete single white pixels in the snow,
the observer makes the match that correlates with the
32x32 pixel average.  Figure 9 also shows that although
the other figures have many different characteristics (lines,
corners, sides), they have almost the same spatial signa-
ture in the 32x32 pixel averages.

These experiments are not intended to describe a
model. Rather, they identify the underlying spatial infor-
mation that is important to the human visual system.  The
results indicate that pyramid processing in which spatial
comparisons are made first within levels and then between
levels can work well to model this data.  Alternatively,
spatial frequency models that perform spatial compari-
sons within frequency channels, then combine channels
can also work well.

Future plans include using this technique for analy-
sis of multichannel influences on lightness matches.  For
this we need to find equivalent backgrounds using dis-
plays with spatial energy distributions in more than one
spatial average domain.  The really interesting question
is how channels combine and interact.  The plan is to use
equivalent spatial backgrounds to understand pyramid
level and frequency channel interactions.

Summary

This paper introduces the idea of equivalent background
for testing spatial models of human spatial vision.  It de-
scribes 50 different test targets of which 27 have identi-
cal pixel image statistics.  It identifies sets of targets with
equivalent backgrounds and analyses the result in light of
different approaches to modeling spatial vision.

The results showed that despite a wide range of pat-
tern types (Snow, Corners, Sides Lines and asymmetry)
the observer matches showed very high correlation with
very simple spatial averages.  Uniform gray surround with
the 32x32 spatial average were indistinguishable from
those of Snow.   Despite the clear visibility of the single
white pixels, their influence as a surround was as the same
as an equivalent uniform gray.  There was no effect on
matching lightness from the clearly visible white Snow.
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