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Abstract 

The visual system has the ability to see and obtain detailed 
information from a highly dynamic range of a scene. For 
example, a person can observe items in one range by 
observing the inside of a dim room as well as outside 
through a window. An algorithm for high dynamic range 
compression that can be applied for still and video images 
is presented. This algorithm is based on a biological 
model that is also suggested for wide dynamic range and 
lightness constancy. It succeeded in automatically 
compressing the dynamic range of images to a 'human 
vision appearance' (as is commonly required in cameras 
and displays) while maintaining and even improving 
contrast. The biological basis is expressed as retinal 
mechanisms of adaptation (gain control), both ‘local’, and 
‘remote’,that enable also video image applications by 
taking into account the dynamics of human adaptation 
mechanisms. The results indicate the significant and 
robust contribution of adaptation mechanisms in image 
appearance, and have been found appropriate for next 
generation High dynamic range cameras (CMOS based). 

1. Introduction 

The visual system has the ability to see and get detailed 
information from high dynamic range scenes. For 
example, a person can observe items in one sight while 
observing a dim room and outside through a window. An 
algorithm for high dynamic range compression that can be 
applied for still and video images is presented. This 
algorithm is based on a biological model which is 
suggested also for wide dynamic range and lightness 
constancy. It succeeds in automatically compressing the 
dynamic range of images to a 'human vision appearance' 
(as is commonly required in cameras and displays) while 
maintainig cotrast and even improving it. The biological 
basis is retinal mechanisms of adaptation (gain control): 
‘local’, and ‘remote’. These mechanisms enable video 
image applications, since they take into account the 
dynamics of human adaptation mechanisms. The results 
indicate that the contribution of adaptation mechanisms to 
image appearance is significant, robust, and was proved to 
fit next generation High dynamic range cameras (CMOS 
based). 

The common formats for the acquisition and display 
of images are usually based on 8 bit 3 color channels (R-
G-B). Thus the dynamic range of intensity of the picture is 
2 orders of magnitude. Natural light has 12 orders of 
magnitude, a single natural scene has 4 and a single sharp 
edge in a natural scene can reach 2 orders of magnitude. 
The human visual system can cope with 14 orders of 
magnitude.  

Images obtained with standard film or digital cameras 
experience a loss in the clarity of details and colors at 
extreme light intensities, within shadows or/and from 
surfaces close to the light source. In recent years, more 
and more imaging devices are able to acquire high 
dynamic range views by more than 2 orders of magnitude, 
such as CMOS sensors for digital cameras, CT scanners, 
imaging systems for space research, etc. Software 
solutions are also capable of fusing multiple exposures of 
the same scene at a low dynamic range (in conventional 
format, 2 orders of magnitude) into one high dynamic 
range image (of approximately 4-5 orders of magnitude). 
Several current algorithms can deal with a large range 
image, acquired in one or several exposures, and convert 
it to a conventional display in one algorithm process, 
without the need to process the image at several stages or 
processing each exposure, separately.1- 4 

High Dynamic Range Compression (HDRC) is also a 
psychophysical phenomenon in which a system is partly 
able to deal with a wide range of illuminations in the same 
scene. It is commonly assumed in the field that the visual 
system adapts to a wide range of intensities, and that this 
is performed through adaptive gain control mechanisms. 
The issue of a high dynamic range has not attracted much 
attention in in the computational aspects of visual 
research,3,5-7 while it has recently been further described in 
the visual literature in the context of lightness perception 
and lightness constancy.8,9 

Previous studies on wide dynamic range using the 
computational approach can be classified into two broad 
groups, global and spatially variant operators (see reviews 
in: Refs. [2 and 5] are often Gaussian with different 
scales. In the next stage each scale is divided pointwise by 
its lower resolution image and thus obtain local image 
contrast. The last stage would be a compressive or 
attenuation function to each of the contrast images. The 
display image is calculated by multiplication or 
summation of the compressed images together. Note that 
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many of these studies used the log domain of luminance 
and actually made the calculation on the luminance 
channel. The issue of a high dynamic range was also 
related to that of color constancy.6 

A few previous papers on the wide dynamic range 
compression have made cursory reference to the visual 
system. These include the work of Jobson and his 
colleagues, who developed a multiscale version of the 
Land’s Retinex model for presenting a model for color 
constancy,6 aimed to be presented also as a dynamic range 
compression.6,10 Since they perform their algorithm on the 
RGB scale, they actually also calculated lightness 
constancy performance, which is revealed as dynamic 
range compression. In their model there is no reference to 
visual mechanisms, such as color coded receptive fields 
and physiological adaptation mechanisms. An additional 
algorithm inspired by the visual system is suggested by 
Pattanaik et al.3,11 The image is decomposed into 
multiscale resolution representations. The adaptation 
occurs using physiological threshold vs. intensity curves 
(Fig. 1 in Ref. [3]). In another study, an interactive tone 
mapping algorithm proposed also a simple model of visual 
adaptation.7  

It has recently been suggested that the compression of 
high dynamic range without “haloes” can be obtained by 
removing pixels whose intensity variation is above a 
factor of 5.12 We made a variation of their application in 
our algorithm in order to avoid the “halo” artifacts.  

The approach we present here is based mainly on 
mechanisms of retinal biological local gain control13-15 
and retinal receptive fields. The algorithm is also based on 
psychophysical findings such as the well known induction 
phenomenon, which shows that the perceived intensity 
(and color) of an image and a scene is not just a simple 
function of the spectral and intensity composition, but also 
depends on the spatial distribution of other stimuli in the 
field of view.  

2. Model 

The model is presented in two main stages. The first stage 
describes the transformation of visual stimuli to responses 
in retinal opponent cells. The second stage describes the 
adaptation mechanism, which includes the local and 
remote effects. Figure 1 presents a block diagram of the 
algorithm which includes only those different stages, that 
were applied for the implementation of real still images. 
(The model includes description of transformation of 
physical stimulus to the cone response, while the actual 
algorithm is related to RGB images and their processing, 
Fig. 1). 

2.1. Transformation of an Image Into Retinal 
Opponent Receptive Fields 

The first stage in the the model describes how an 
image is processed through the achromatic retinal 
opponent cells and their adaptation mechanisms. Our 
model can be regarded both as a physiological model and 
an algorithm that was inspired by the physiological 
mechanisms. The intensity channel is fed by rods and 

cones at a low and a high scale of huge range of 
intensities, respectively. The retinal ganglion cells, which 
are the last level of processing in the retina, have a center-
surround opponent structure in their receptive field (RF). 
These cells respond positively (increase in spike rate) to a 
specific intensity input to the center of their RF, and 
negatively (decrease in spike rate) to an opponent 
intensity input to the surround region of the RF.  
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Figure 1. A schematic block diagram of the algorithm for 
compression of wide dynamic range. Components of the model 
are detailed in the text. 

 
The input to the rods and cones level is the spectral 

composition of the light reaching the retina. The quantum 
catch is first expressed by an inner product of the spectral 
sensitivity with the reflectance properties of the surface at 
any specific location in the image, and with the spectral 
composition of the illumination falling on this location: 

( ) ( ) ( ) λλλλ dIlI
rangevisual

pigment ℜ= ∫  (1) 

 where I(λ) is the spectral absorption functions of the 
photoreceptors as a function of the wavelength λ; ℜ(λ) is 
the reflectance function of the surface at any specific 
location in the image; and I(λ) is the spectral composition 
of the illumination falling on this location.  

The receptor responses of the pigments are then 
expressed by the Naka-Rushton saturation equation as a 
function of their input Ipigment .

16,17  

n
NR

n
pigment

n
pigment

receptor
I

I
I

)(σ+
=  (2) 

 
The parameters n and σNR (the Naka-Rushton ‘semi-

saturation constant’) were taken as constant parameter for 
all the pigments. Their photoreceptors’ responses Ireceptor 

are normalized separately to a range of 0-1. (These two 
stages (Eq. 1 and 2) describe the physiological process in 
the visual system, but do not apply to the algorithm 
implementation where the image was already given in 
RGB scale.) 
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The spatial response profile of the ganglion cell’s RF 
is expressed by a opponent Gaussians over the two sub-
regions of the RF, ‘center’ and ‘surround’. Contrary to 
what is common in the literature regarding the DOG 
(Difference of Gaussians) operation, in this model the 
substraction operation is only performed after each sub-
region is adapted.14,15 The ‘Center’ signal represents the 
central area of the RF of retinal ganglion cells, stimulating 
a single cone, as often occurs in the fovea.18 The ‘center’ 
signal was defined as an inner product of rod type (or 
cone) response, Ireceptor with its circular spatial profile fc. 
This profile (Fig. 1) is a Gaussian decaying spatial-weight 
function (WF)15: 

( )∫∫=
areacenter

creceptorcen dydxyxfIG
  

,  (3) 

where x and y represent the distance of the ‘center’ sub-
region from the center. 

The ‘Surround’ signal represents the surround sub-
region of the RF of the retinal ganglion cell. The 
‘surround’ signal, Ireceptor, with the outer diameter of the 
annular ‘surround’ being three times larger than that of the 
‘center’11: 

 

( )∫∫=
areasurround

sreceptorsrnd dydxyxfIG
 

,  (4)

where fs is a Gaussian spatial weight function extending 
over the surround sub-region. The total weight of fc is 1, 
whereas the total weight of fs is 1/CSR (center:surround 
ratio of weights), which represents the weaker weight of 
the surround. CSR obtained a value of 1.5 or a similar 
value.14 

For a description of the adaptation mechanism, a third 
signal, the ‘Remote’ signal, is required to represent the 
peripheral area that extends far beyond the borders of the 
classical RF of the ganglion cells. The inclusion of this 
signal is motivated by electrophysiological findings.19,20 
The ‘remote’ area has the shape of an annulus, concentric 
to that of the ‘center’ and of the ‘surround’. The inner 
diameter of the ‘remote’ is equal to the external diameter 
of the ‘surround’ and therefore does not overlap the 
‘center’ or the ‘surround’. The ‘remote’ signal, Gremote that 
feeds the opponent cells level is defined as the inner 
product of each receptor output with a remote spatial 
weight function fr:  

( )∫∫=
arearemote

rreceptorremote dydxyxfIG
  

,  (5) 

where fr is a Gaussian decaying spatial-weight function20 
over the remote area: 
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Kremote is a constant that defines the slope of the weight 
function and Aremote is a factor of normalization to a unit:  
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2.2. Adaptation  
The ‘center’ and ‘surround’ sub-regions adapt 

separately, with the adaptation values being based on 
electrophysiological findings.14,15 The response, R, of the 
on-center retinal cells, is therefore expressed by:  

( ) ( )
( ) ( )

( )
( ) ( )tGtG

tG

tGtG

tG
tGR

srndsrndsrnd

srnd

cencencen

cen

,,
,

σσ +
−

+
=  (8) 

where σ is the adaptation factor. σ is a function of G(t’) 
and time t, where t’≤ t. 

A change in σ produces a gain control effect 
equivalent to the curve shift of the “response vs. log 
illumination” curve, which has been shown 
experimentally.13 The adaptation is reflected in a shift of 
the response curve as a function of time. Consequently, 
given that the change from the previous stimulation is 
sufficiently large, a curve shift will occur each time a new 
range of input intensities to a color channel is viewed, 
bringing the system to a new adaptation state. This curve 
shift causes an apparent decaying function of the response.  

 

Intensity (Log)

t=0

t=∞

I

R(t)

 

Figure 2. Illustration of the biological gain control, i.e., the 
curve- shifting mechanism which was applied as an adaptation 
mechanism. The curves display the response of each sub-region 
of a receptive field as a function of the luminance at this area at 
various adaptational levels. The dark left curve represents the 
curve response before the adaptation and right dark curve 
represents the response curve after the adaptation (see text). 

 

Each of these adaptation factors, σcen and σsrnd, 
consist of ‘local’ and ‘remote’ components. The ‘local’ 
adaptation refers to adaptation occurring in the RF’s sub-
regions (‘center’ or ‘surround’) owing to their own inputs, 
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whereas ‘remote’ adaptation refers to the effect of regions 
peripheral to the ‘classical’ RF on its sub-regions.19-22 

The model was designed to comply with Weber’s law 
(which states that there is a constant proportion by which 
a standard stimulus must be increased in order to detect a 
response change), which has been found in relation to 
local adaptation.15 The model therefore suggests that the 
adaptation factors of each sub-region have separate 'local' 
and 'remote' components:  

remotebsrndcenremotecenand

cencenbcenlocalcenwhere

remotecenLlocalcencen

GGGIRM

G

),,( max,

,

,,,

=
+=

+=

σ
βασ

σσσ
 (9) 

while 

( )
srndcencensrndcen mGGIkcGGIRM −−= )(),,( maxmax  (10) 

The adaptation factors for surround sub-regions are 
similarly defined. α, β and c’ are constants or c’ is a 
function which is used as a modulation for the remote 
adaptation, σremote. Gb(t) is the adapting component of the 
response of the RF sub-region. The description of the 
recursion function, Gb, its dependance on the history of 
the remote signal as well as its temporal parameter on the 
history stimulation is described in details in previous 
publication.22,23 The current study presents results only for 
still images. Therefore, we present only the specific case 
where the steady state condition is applied (t=.∞). In this 
case, Gbremote=Gremote. Therefore, the response function is a 
substraction of the center response, Rc and the surround 
response, Rs, as following: 
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While k is function of Imax and Rmax is a function the 

maximum value of intensity in (Imax) the image, and m is a 
constant ranging between 1-5, and while a=α+1 and 
b=β. The parameters dc and ds present the weight function 
of the center and surround components. The degree of 
remote adaptation is controlled by the ‘c’ parameters: ccen 
and csrnd for the remote adaptation of the ‘center’ and the 
‘surround’, respectively.  

3. Methods 

3.1 Simulations 
One of the common formats for digital storage of 

high dynamic range images is RGBE, which is used by the 
Radiance Rendering System to create the so-called 
Radiance Maps (Berkley University site). Four bytes are 
used in the RGBE format (instead of 3 in the conventional 
images) to create a representation similar to a floating 
point. The first 3 bytes represent the color channels (R-G-
B) whereas the fourth byte represents the exponent (E), 
which is common to the three color channels. 

Simulations were performed on real images by 
applying the above model on the luminance channel after 
extracting it from the chromatic channels. This was 
performed by transforming each pixel in the RGB image 
to the CIE XYZ scale, while extracting the Y values (the 
luminance values) and then transforming the scale to CIE 
xyz in order to store and retrieve the chromatic 
information of each pixel after the algorithm calculations 
on the luminance domain. The method described here can 
be applied mainly for images acquired by a digital camera, 
by different sensor methods. The application of above 
model and the calculations of center of a receptive field is 
related pratically to each pixel in the image, such that the 
inner mltiplication equations implemented as convulotions 
in the algorithm.  

4. Results 

4.1. Results of the Algorithm on Conventional Images 
We examined a variety of conventional real images 

with our algorithm (with a standard display of 256 levels 
of luminance), using the same set of parameters. Our 
algorithm yielded satisfactory results in less than a few 
seconds in all cases, while we did not attempt to optimize 
the algorithm so that it would be be more effective. 

Figure 3 presents three different real images (left 
column) which are the original images that were taken 
(with permission) from the site of the ‘Trusight Enhanced 
Video Compression’ company.  

4.2. Results of the Algorithm on HDR Images 
Application of the algorithm to real life images, as 

specified in the Methods section, yielded a set of 
corrected images. The dynamic range in these images 
exceeded 30,000:1. The algorithm performance of this 
type of images was examined on almost the same set of 
parameters. However, it was different from the one used 
for the conventional images. As can be seen from the 
original image, it loses visibility around and within the 
bright light and much of the texture details are not visible 
in the dark areas. All these details are clearly visible in the 
corrected image.  

5. Discussion 

This study presents an algorithm based on a human vision 
model that succeeds in performing automatic wide 
dynamic range. It requires no a priori knowledge of 
illuminations or surfaces, and hence is fully automatic, 
while still enabling different degrees of correction through 
the algorithm's parameters. Results of employing the 
algorithm for image compression demonstrate a 
significant compression while preserving, and even 
enhancing, the details in the image in the bright and dark 
zones. 

5.1. Considerations for the Algorithm 
The model is based on local and remote dynamic 

adaptation mechanisms, which cause the 'curve-shifting' 
effect.13-15 Since the human capability for wide dynamic 
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range is large, we assumed that the visual system performs 
this ability under both Scotopic and Photopic conditions 
in the same scene. Therefore, the Parvo as well as the 
Magno system, i.e., the color-coded cells in the retina and 
the achromatic coded cells in the retina, contribute to this 
ability. Both types of adaptation, local and remote, cause a 
change in cell response with time, reflecting the cell's 
transient response as a result of the curve-shifting effect.13-

15 The transformation of cell receptive field regions to 
image pixels (see Methods) and cell transient responses to 
image correction dynamics, enabled application of the 
algorithm to the compression of still and video images. 

The model suggests that the subtraction operation 
between the two color opponent RF sub-regions 
(Difference of Gaussians - DOG) is performed after the 
adaptation. The separate adaptation of two RF sub–
regions has a computational advantage in that it makes the 
compression more cost-effective. When adaptation is 
carried out first and subtraction afterwards, the responses 
to the two surfaces drop to different points on the new 
adaptation curves were the slopes are higher and can yield 
larger differences in responses for the edges, after the 
center surround subtruction.  

5.2. Comparison with Other Models  
Several algorithms, which are multi resolution 

representations and contain the property of preserving 
local intensity ratios, have been used for dynamic range 
compression.1,2,4,12,24 These algorithms share several 
common features. They apply multiple lowpass filters 
(usually Gassian filters). Each mean area in the image is 
then divided by its lower resolution image. Thus, they 
obtain the local contrasts. Next, a compressive function 
and its reconstruction function are applied.5 Although our 
algorithm is derived using a different approach (the 
biological motivation), our algorithm has some features in 
common with these general features, such as obtaining 
local contrast. However, even this feature is performed 
differently in our algorithm, since the adaptation is 
performed before the subtraction of the Gaussians of the 
‘center’ and surround sub-regions of the receptive field. 
This type of adaptation operation and its stage of 
implementation in the model is different from previous 
visual motivated HDR model.3 Furthermore, our 
algorithm performs a remote adaptation operation (gain 
control, through modulated “curve-shifting”) in addition 
to the local adaptation to each RF sub-region.  
Jobson and his colleagues,6 suggested that in general, 
Land’s work on color constancy provides a good method 
for dynamic range compression (but not wide dynamic 
range) and color rendition.  

In Land’s later model25,26 he used neurophysiological 
building blocks which contained masks of center/surround 
spatially opponent operations, but did not include the 
physiological color-coded receptive fields, which we 
applied previously in our color constancy and contrast 
models.22,23 Jobson and his colleagues6 obtained color and 
lightness constancy to some extent, since their calculations 
were performed on the RGB scale. Spitzer and Semo 
color constancy algorithm22 did not focus on nor perform 

lightness constancy a, but rather concentrated on visual 
physiology believed to not be performed by the same 
mechanisms in the visual system. For example, in order to 
process the dark regions in the image, the scotopic system 
(rods) has to be mobilized, while the photopic system 
(cones) must be mobilized to process the regions with 
extreme luminance. In our current model we processed 
only the intensity domain to perform the wide dynamic 
range, while preserving the original color of each pixel 
during the processing, returning these values after the 
calculations. Beyond the need to have two separate 
models for wide dynamic range and color constancy from 
the visual aspects (see above), we would like to emphasize 
the additional need from computational point of view, 
mainly due to the different ranges of luminance and color 
intensities for these two algorithms. In addition to the 
different approaches and goals of the two algorithms, 
different building blocks are used in their algorithm and in 
our two algorithms (the color constancy and wide dynamic 
range). We used color-coded receptive fields,22,23 and the 
mechanism of adaptation was applied separately to each 
receptive field region (center and surround). We also 
added a modulation component to the weight function of 
the remote adaptation (Eq. 10).  

In summary, our algorithm28 successfully performs 
good quality and wide dynamic range compression and is 
based on physiological mechanisms. The quality issue 
should be judged quantitatively in the future. However, 
the methods for this still need to be developed. 

6. Conclusions  

The automatic wide dynamic range compression algorithm 
has been demonstrated for a large amount of images and 
obtained with high contrast where the details in the image 
can be distinguished. The algorithm is based on human-
vision and was motivated by a physiological model 
suggested for the early stages in the visual system. The 
algorithm includes dynamic gain control ("curve shifting") 
mechanisms which enable application for both still and 
video images. Its application to video images is performed 
by dynamically adjusting the algorithm’s parameters at 
each frame according to the spectral content of the current 
frame as well as previous frames. A large repertoire of 
photographed images was tested. The algorithm performs 
wide dynamic compression in these images quite 
successfully.  
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Figure 3. Demonstration of the algorithm performance on an image of standard format (left) while the original image is also presented 
(right). 

 

 

 

 

 

 

 

 

Figure 4. Additional two examples of algorithm performance on standard format are presented, with comparison to those of Fattal et. al.,2 
(right column). It can be seen that our method produced better exposure  of the details in the dark zones in the images and better enhanced 
contrast (middle column) than those of Fattal et al.  
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Figure 5. The figures demonstrate the algorithm performance (middle column) of compression of two HDR images (left column) which are 
compared with the performance of a recent study24 of compression of wide dynamic range (right column). It can be seen that the details in 
the bright zones are exposed in the sky as well as the dark zones, middle column, and also in the light zones, better than in the compressed 
image done by Reinhard et al.24 
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Figure 6. The HDR Cathedral image ( left) was compressed by several groups, and the best printed performance until now, as far as we 
know, demonstrated by Fattal et al (right). Our algorithm (middle) succeeded to better expose details mainly in the bright zones (middle) 
Note that the vittrage in the right window and the top dome in the middle are exposed in comparison to this details in the right.2 
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