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Abstract 

Color imaging systems are continuously improving, and 
have now improved to the point of capturing high dynamic 
range scenes. Unfortunately most commercially available 
color display devices, such as CRTs and LCDs, are limited 
in their dynamic range. It is necessary to tone-map, or 
render, the high dynamic range images in order to display 
them onto a lower dynamic range device. This paper 
describes the use of an image appearance model, iCAM, to 
render high dynamic range images for display. Image 
appearance models have greater flexibility over dedicated 
tone-scaling algorithms as they are designed to predict how 
images perceptually appear, and not designed for the 
singular purpose of rendering. In this paper we discuss the 
use of an image appearance framework, and describe 
specific implementation details for using that framework to 
render high dynamic range images. 

Introduction 

In everyday life we encounter a huge range of absolute 
luminance levels, most of which the visual system handles 
with ease. Perhaps more impressive is the visual systems 
ability to instantaneously and seamlessly adapt to scenes 
with a large dynamic range, scenes that can exceed 10000 to 
1 between sunlight and shadows. 

Recent advances in color imaging have lead to systems 
that are capable of capturing these high dynamic range 
(HDR) scenes. These systems can be based upon multiple 
photographic exposures, as described by Debevec1 and Xiao 
et al,2 or sensor improvements that make it capable to 
capture high dynamic range information with a single 
exposure.3,4,5 Likewise, these systems might be high-contrast 
computer graphics renderings as described by Ward et al.6,7 

While the systems for capturing high dynamic range 
images have improved over the years, the systems for 
displaying these images have not kept up. A typical desktop 
display is capable of displaying only one or two orders of 
magnitude of dynamic range. As such, there has been much 
research into developing tone reproduction algorithms for 
rendering high dynamic range images onto lower dynamic 
range displays. Detailed reviews of many of these algorithms 
can be found in Reinhard8, Durand9, DiCarlo10 and 
Pattanaik.11,12 Many of these algorithms do an admirable job 

of rendering HDR scene for display on low-dynamic range 
display devices. In general these algorithms are designed for 
a single purpose: rendering high dynamic range scenes onto 
lower dynamic range displays. The techniques used vary, 
though most are based at some level on a perceptual model 
of human contrast (either local or global). These techniques 
can typically be thought of as perceptually based image 
processing models. 

There have been more comprehensive models of the 
human visual system that have been used to guide tone 
reproduction of high dynamic range images. One example of 
this type of model is the multiscale observer model, 
described by Pattanaik et al.11,12 The spatial and chromatic 
adaptation facilities of this model were capable of tone-
scaling high dynamic range images, though the model was 
not limited to just this purpose. This paper describes a 
similar approach to tone mapping, through the use of an 
image appearance model. The image appearance model 
proves to be quite adept at rendering high dynamic range 
images, though that is just one design goal. 

Image Appearance Model 

A next generation image appearance model, coined iCAM, 
was recently introduced.13 Some of the defined goals in 
formulating iCAM were to combine traditional color 
appearance capabilities along with spatial vision and image 
quality metrics. iCAM was designed to be computationally 
simpler than the multiscale observer model, with similar 
capabilities. 

Image appearance models attempt to predict the 
perceptual response towards spatially complex stimuli. As 
such, they can provide a unique framework for the 
prediction of the appearance of high dynamic range images. 
It is important to stress that these models, such as iCAM, are 
not designed specifically as tone-mapping algorithms but 
rather as predictors of overall color appearance. However, 
the general iCAM framework does not need to be changed 
to be useful for the rendering of high dynamic range scenes. 
Several of the parameters, or modules, of the iCAM 
framework can be specifically tuned for this application, just 
as they can be tuned for image difference and quality 
predictions.13 This paper focuses on one specific 
implementation of the iCAM framework for high dynamic 
range tone mapping, while examining the effects of several 
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of the individual parameters. Figure 1 shows the general 
flowchart of the iCAM image appearance model, including 
the inverse model used for displaying high dynamic range 
images. 

 

 

Figure 1. Flow chart of iCAM for rendering high dynamic range 
images. 

 
The input into the model is a high dynamic range image, 

typically a floating point RGB image. Ideally the input 
would be a characterized linear RGB, CIE XYZ, or spectral 
image. The RGB image is then transformed into CIE 1931 
XYZ tristimulus values, through device characterization (or 
assumption if necessary). An example transformation using 
the sRGB color space is described in Equation 1. 
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Chromatic Adaptation 
Once the input image is in device independent 

coordinates, the next stage is the chromatic and luminance 
adaptation transform. This step serves two purposes: local 
adaptation of the high dynamic range scenes, and a global 
whitepoint shift towards CIE D65. This whitepoint shift is 
necessary, as the IPT color space used in iCAM is defined 
only for D65.14 The chromatic adaptation transform is 
identical to that of CIECAM02, which is a linear von Kries 
transformation with an incomplete adaptation factor.15 This 
transform is shown in Equations 2-4. 
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The first stage is to transform the XYZ tristimulus 
values into sharpened cone responses using Equations 2 and 
3. The linear von Kries transform with an incomplete 
adaptation term, D, is shown in Equation 4 for a single 
sensor. The primary difference between the iCAM chromatic 
adaptation transform and the CIECAM02 transform is in the 
definition of the whitepoint, Rw in Equation 4. The iCAM 
transform uses a low-pass version of the image itself as the 
adapting whitepoint to perform a localized adaptation. This 
adaptation can be a chromatic adaptation, as describe in 
Equations 2-4, or can be a luminance only adaptation. This 
can be accomplished by replacing Equation 2 with Equation 
5 below. 
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There are essentially three free parameters for the 
chromatic adaptation transform: the amount of blurring in 
the low-pass image, the degree of incomplete adaptation, 
and the choice between chromatic and luminance adaptation. 
In essence, however, each of these parameters depends upon 
the other choices. For instance, the degree of adaptation 
depends highly upon the choice of the blurring function. We 
utilize a Gaussian blur in the frequency domain, as shown in 
Equation 6. 
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The width of the filter, σ, is proportional to the amount 

of blurring. There are several options for choosing the 
amount of blurring. The first is to completely characterize 
the viewing conditions, and specify the width in device 
independent coordinates such as cycles-per-degree of visual 
angle. This approach is the ideal situation, but requires a-
priori knowledge of the output viewing conditions. A 
simplifying assumption can be to specify the width of the 
filter in coordinates of the image itself. This suggests that 
the observer will alter the viewing conditions (by moving 
closer or farther) to get constantly sized images. Thus we 
can specify the σ in Equation 6 as a function of image size, 
in pixels such as xPixels/4. 

The size of the blurring function will have a direct 
effect on the remaining free parameters. For instance, as we 
approach a large blurring function, a quarter or half of the 
image size, then the need for partial adaptation and 
luminance adaptation decreases. That is because the 
whitepoint image is converging upon the average of the 
entire scene. In the limit the blurring function becomes the 
average of the scene and the transform becomes identical to 
CIECAM02. In this situation, the partial adaptation function 
from CIECAM02 can be used. As the blurring function 
becomes smaller, then the need to specify the degree of 
partial adaptation explicitly becomes necessary. Figure 2 
shows an example of this. 

 

 

Figure 2. Simultaneous variation of blurring filter (columns) and 
degree of partial adaptation (rows). 

Each column in Figure 2 represents a series of images 
filtered with two sized blurring kernels. The left column uses 
a kernel 1/4 the size of the image, while the right column 
uses a kernel 1/16 the size. The rows represent various 
degrees of partial adaptation (0.1, 0.5, and 1.0). The top row 
of images in Figure 2 look similar to each other, with a bit 
more shadow information in the left image, and more 
highlight information in the right image. As the degree of 
adaptation increases the difference between to two filter 
sizes become very evident. In both columns the overall color 
balance shifts from orange to “gray.” In the extreme, if each 
pixel were adapted to itself then the entire image would go 
gray. This is fairly evident in the bottom right image. There 
is little color information remaining, and there are distinct 
“rings” around the bright light sources. This is a common 
phenomena found in many HDR tone rendering 
algorithms.8,17 

From Figure 2 it is possible to infer some default 
settings for the parameters of iCAM for high dynamic range 
tone rendering. A filter size of 1/4 the image size seems to 
work well for most images, though again it should be 
stressed that this is based on an assumption for the viewing 
conditions. For unusually large or small images this 
parameter might need to be altered. The partial adaptation 
factor, D, should be set between 0.1 and 0.4 for most 
applications. If auto color balancing is desired, then the 
standard von Kries chromatic adaptation transform can be 
used. If the overall color balance needs to remain the same, 
replacing Equation 2 with Equation 5 results in just a 
luminance adaptation transform. 

Local Contrast/Surround Effect 
The chromatic and luminance adaptation only takes care 

of part of the HDR tone mapping. Once the HDR image has 
passed through the chromatic adaptation transform, the 
image is manipulated through a series of local tone 
reproduction curves. These curves can be thought of as 
changes in local contrast in the image, as a result of changes 
in the localized surround and luminance. 

It is well understood in the field of color appearance 
that the overall luminance and surround effect perceived 
contrast of an image. In traditional color appearance there is 
a single surround and luminance factor (Dim, Dark, Normal, 
etc). In the iCAM image appearance a spatially localized 
“surround” map controls model the surround and luminance 
factor. This map is another low-passed version of the 
absolute Y image. This low-passed image is used to 
calculate a series of power functions, or tone reproductions 
curves. These functions are calculated by using the surround 
and luminance calculations from CIECAM02.15 This is 
similar to the local contrast adjustments described by 
Moroney.16 
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The FL factor from CIECAM02 is described in 
Equation 7, and shown in Figure 3 it is scaled by an 
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additional 1.0/1.7 to normalize the function to 1 at a 
luminance of 1000 cd/m2.  

For use in iCAM the adapting luminance, LA, is 
considered to be the low-passed version of the absolute Y 
tristimulus image.  
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Figure 3. FL surround luminance function from CIECAM02 

 

Figure 4. Effect of blurring kernel size, and FL scaling factor 

 
 
The result is a tone curve for each pixel in the image, 

depending on the luminance of the surround neighborhood. 

This results in two free parameters: the normalization of the 
FL function, and the width of the blurring kernel. 

Figure 4 shows the effect of altering the blurring kernel 
size, using Equation 6 again, as well as changing the scaling 
factor of the CIECAM02 FL curve. Essentially, changing the 
scaling factor “shifts” the image location around on the 
curve. As evident in Figure 4, increasing the scaling factor 
has an effect of increasing information in the shadow region, 
while desaturating the bright region. This is illustrated by 
moving down the rows in Figure 4. Likewise, increasing the 
size of the blurring kernel increases the information in the 
shadow areas, although at the cost of decreased saturation 
and increased “halo” effect around light sources. We have 
found the ideal setting is between 1/1.5 and 1/1.7 for the 
scaling factor, and a blurring kernel between 1/2 and 1/4 of 
the image size. 

IPT Transform 
The surround exponents calculated in the previous 

section are actually used in the transform from XYZ 
tristimulus values into the IPT appearance space. The first 
stage in this transform in to convert the XYZ units into LMS 
cone responses, as shown in Equation 8. 
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These cone responses are then compressed using a 
nonlinear power function, traditionally as shown in Equation 
9 for the L channel. 
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This nonlinear power function is modified on a per-
pixel-basis by the surround map calculated in the previous 
section, as shown in Equation 10. 
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Equation 10 is repeated for the M and S channels. 
Typically the LMS responses are brought into the IPT 
appearance space for calculation of appearance correlates 
such as lightness, chroma, and hue. This would be 
accomplished using Equation 11. 
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If we are not interested in the actual appearance 
correlates, and are simply interested in displaying the HDR 
tone mapped then this step is not necessary. To invert the 
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IPT image back for display we can invert Equation 10 for a 
single surround condition. This is shown in Equation 12. 
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The LMS cone responses, after applying the surround 
tone reproduction functions, are then converted back into 
CIE XYZ tristimulus values. 

Displaying the Images 
To display the XYZ images on a monitor we must first 

invert the chromatic adaptation transform, from D65 to the 
monitor whitepoint. This is accomplished using Equations 2-
4 once again. The transformed XYZ values are then 
converted back to RGB using the inverse of Equation 1. The 
results are linear RGB values. The final images can be 
displayed by accounting for the display nonlinearity and 
scaling the images between 0-255. Often it is beneficial to 
apply a clipping function to the linear RGB data before 
scaling. This clipping function can remove any extremely 
bright pixels prior to display. The clipping is defined as a 
function of the image data itself, often as a percentile. For 
instance clipping to the 99th percentile of the image data, 
results in the following equation.  

%99%99      

%99:

=>
=<

RGB

RGBRGBclip
   (13) 

An example of clipping to various degrees is shown in 
Figure 5. The top frame illustrates no clipping. The highlight 
detail outside the parking garage is clearly visible, though 
the shadow detail is mostly lost. The middle frame shows 
clipping at 99%. There is information in both the outside 
highlights and inside shadow detail. The final frame shows 
clipping at 95%. The highlights are partly lost, but there is 
great detail in the shadow regions. One can pick the clipping 
level depending on the desired effect. For generally purpose 
tone-mapping a choice of 99% seems to work well. 

After clipping the RGB values are then scaled so that 
the minimum value is 0 and the maximum is 1.0 

minmax

min

RGBRGB

RGBRGB
RGB

−
−

=    (14) 

Finally these values are compressed with a power 
function, and scaled between 0 and 255. 

7.1
1

255 RGBdRGB ⋅=     (15) 

The dRGB values can then be displayed normally on a 
monitor, or saved to an image file. 

 

 

Figure 5. Effects of clipping the RGB image prior to display 

Conclusions 

This paper has outlined the use of an image appearance 
model, iCAM, for tone mapping high dynamic range images. 
High dynamic range images are images that have a large 
contrast ratio and can exceed 5 units of magnitude. Tone 
mapping is necessary to display these images on a device 
with a much smaller dynamic range. 

iCAM is a model designed for predicting overall image 
appearance rather than a specific tone-mapping algorithm. 
As such, it is uniquely suited for rendering high-dynamic 
range images in a perceptually meaningful way. This paper 
has outline the general use of the iCAM framework, and 
provided some specific implementation details that provide 
visually pleasing renderings. The parameters given in this 
paper can be thought of as a starting point for research on 
the perception of high dynamic range scenes. It is not the 
intent to imply that the parameters given here adequately 
describe the overall perceptual appearance. Extensive 
psychophysical research must be undertaken in order to 
make that claim. It is hoped that in the future iCAM will 
provide a foundation upon which to base that type of 
experimentation. 

The general source code (Matlab, Mathematica, IDL) to 
iCAM, and this implementation for HDR tone mapping can 
be found at http://www.cis.rit.edu/mcsl/iCAM 
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Figure 6. “Pleasing” renderings of HDR images from 
http://www.debevec.org 
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