

Interactive Goniochromatic Color Design
Clement Shimizu, Gary W. Meyer, and Joseph P. Wingard

Department of Computer Science and Engineering, University of Minnesota
Minneapolis, Minnesota

Abstract

An interactive program has been developed to assist in the
design of new goniochromatic colors. The program gives the
user a unique set of controls over a second order polynomial
that defines these color families at a sequence of aspecular
reflection angles. One approach, based on traditional
metallic colors, allows the user to adjust the average hue,
saturation, and brightness of all of the colors interpolated by
the polynomial. Another method, appropriate for the newer
effect colors, permits the designer to establish face and flop
colors to be reached at either end of the interpolation. In a
final technique, variations produced by adjusting model
parameters can be evaluated and selected.

1.0 Introduction

Computer graphics is on the verge of being able to provide
computer aided design tools to color appearance
professionals. These tools will let industrial designers and
color technologists have the same interactive control over
color appearance that engineers and architects have had over
geometry since the beginning of computer graphics almost
forty years ago. The emergence of computer aided color
appearance design (CACAD) will allow color appearance
designers and scientists to examine how existing paints and
coatings look on new products. More importantly, CACAD
will make it possible to hypothesize and visualize new
surface coatings with heretofore unseen reflection properties
(Meyer, 2000).

The recent computer graphic advance which has made
this possible is the development of per pixel shading
hardware that permits display, in real time, of objects with
arbitrarily complex surface reflection functions. While
earlier graphics devices evaluated a limited shading model at
polygon vertices and interpolated the result across the
polygon's interior, the new hardware can compute a complex
reflectance model at every pixel that composes a polygon.
This makes it feasible to treat surface reflection in a very
general manner, including the use of a bidirectional
reflectance distribution function (BRDF) (Heidrich and
Seidel, 1999; Kautz and McCool, 1999) and wavelength
based color calculations.

While the ability of computer graphics hardware to
display complex surface reflection has been improving, new
“effect” paints are being developed for use in a variety of
different design applications. These so-called

goniochromatic colors have the property that the color of the
reflected light changes with the angle of reflectance.
Metallic and pearlescent automotive paints are two examples
that are in wide use. The appearance of these paints is
difficult to characterize because a single color measurement
is not sufficient. This complicates the job of a designer who
invents new goniochromatic colors, because they must
specify not just one color but a whole family of colors.

In this paper we describe an initial attempt to develop a
CACAD program for designing and visualizing hypothetical
goniochromatic colors. The work is based upon an existing
reflection model for metallic paint which assumes that the
variation in metallic color with reflectance angle can be fit
with a second order polynomial. The program gives the
designer several unique ways to modify this second order
curve. These techniques range from editing the individual
data points to which the curve is fit, to adjusting the average
hue and saturation of the color represented by the curve, to
selecting the so-called face and flop colors that the curve
must interpolate near specular and far from specular. The
program uses per pixel shading hardware to allow the
designer to see the new color in real time on a three
dimensional surface. The new color’s variation in
reflectance with aspecular angle can be written to a file for
manufacturability analysis.

2.0 Metallic Reflection Models

It is well known in the field of computer graphics that the
reflection of metallic objects is primarily specular (Cook and
Torrance, 1982). In terms of appearance, this means that
metallic surfaces appear brightest when viewed in the
specular direction and become much darker as the line of
sight shifts away from specular. Metallic paints exhibit this
property even though it results from a directional diffuse
component that comes from below the surface. The paint
and coatings industries refer to how lightness changes with
viewing direction as the flop or travel of the color. This
property of metallic colors accentuates an object's curvature
and may account for the popularity of metallic automotive
finishes (Rodrigues, 1995).

Our program employs a shader that can render the
appearance of a metallic paint from a limited number of
spectraphotometric measurements. Alman (1987) performed
a systematic study of metallic paint which revealed that only
a few data points need to be taken in order to characterize a
metallic color's flop. He found that a second order

IS&T/SID Eleventh Color Imaging Conference

16

polynomial could successfully interpolate CIE Lab color
coordinates derived from in plane goniospectrophotometric
measurements. To fit the curve, he suggested that only
measurements at specular, near grazing, and one angle in
between were necessary. Others confirmed his results
(Rodrigues, 1990; Saris, et al., 1990; Venable, 1987). We
utilize a shader that can interpolate a set of such
measurements and render the appearance of metallic
automotive paint (Westlund and Meyer, 2001).

2.1 Control of the Metallic Reflection Model
In the program, a metallic color is represented using a

quadratic curve that plots the reflected Lab tristimulus
values of the color as a function of the angle θ from the
specular direction (the aspecular angle). This curve is
initially determined using measured data points from an
existing metallic color. The user interface, described in
Section 5.0, allows the data points to be adjusted and the
curve to be refit. The curve itself is represented as a clamped
quadratic polynomial. The control points of this type of
curve provide a different way for the user to change the
shape of the curve and define a new metallic color.

A clamped quadratic polynomial is a two piece
function. The first piece is a parabolic curve from angle zero
to the apex of the parabola, referred to here as the clamp
point. The second piece starts at the apex and remains a
constant value across the remaining angles. The control
points of the clamped quadratic polynomial occur at the
angle zero and the apex of the quadratic. In the context of
automotive paint, this means that the goniochromatic color
shifts at a quadratic rate through a range of off specular
angles, and the color remains constant for the rest of the
angles.

Face is the name for the color at angles close to
specular. Flop is the name for the base color or the color that
appears at viewing angles far from specular. Travel refers to
the rate at which the color shifts from face to flop. Flop,
face, and travel colors directly correspond to the control
points of the clamped quadratic polynomial defining our
internal representation of color.
Since the user interface uses data points, clamped
quadratics, and control points all to represent the same color
appearance, it is necessary to convert information between
the three modes. Using a least squares approximation
method, the coefficients to the clamped quadratic
polynomials can be found that best interpolate a set of data
points. It is important that the least squares approximation
method fits the clamped quadratic curve to the data points,
and not to a standard quadratic polynomial. The clamped
quadratic polynomial can be evaluated at specific angles to
obtain new data points. Evaluating the clamped quadratic
polynomial at the angle zero and the apex of the quadratic
give the control points. The clamped quadratic can be solved
for directly given its control points. We work through the
mathematical details only for the L curve, but the a and b
curves are done similarly.

Figure 1. The clamped quadratic curve’s data points are shown as
black dots and control points are shown in yellow.

() 2
a b cL L L Lθ θ θ= + + (1)

Setting the derivative of the quadratic polynomial to be
zero and solving for θ, we can find the clamp point so we
can evaluate the clamped quadratic polynomials.

()

() ()

0 2 *

/(2 *)

min(,)

a b

Clamp b a

ClampedQuadratic Clamp

L L L

L L

L L

θ θ
θ

θ
θ θ θ

∂ = = +
∂

= −
=

 (2)

We specify the control points of the L, a, and b curves
to be (0, L(0)) and (θClamp, L(θClamp)). Normally three control
points would be needed to define a quadratic polynomial,
but since a quadratic polynomial is symmetric about its
apex, the clamp point counts for two control points. In order
to obtain the clamped quadratic polynomial from the control
points, insert the control points into the quadratic formula
and solve for the coefficients. The solution is shown below.

()
()

2

0

2 * *

c

c Clamp

a
Clamp

b a Clamp

L L

L L
L

L L

θ
θ

θ

=
−

=

= −

 (3)

2.2 Complete Metallic Reflection Model
Our program implements an interactive version of the

metallic reflection model developed by Westlund and Meyer
(2001). This model treats the overall reflection from a
metallic paint as a simple linear combination of a subsurface
and a first surface reflection. The subsurface reflection is
modeled using the clamped second order polynomial
described in Section 2.1. Because we start with Lab data, a
tristimulus version of a BRDF is constructed from the three
separate L, a, and b curves. This BRDF is addressed using
the aspecular angle θ determined from

acos((2 *()))i i rnθ θ θ θ= − − • (4)

where θi is the incident direction, θr is the reflection
direction, and n is the surface normal. The first surface

IS&T/SID Eleventh Color Imaging Conference

17

reflection is modeled using a modified Phong reflection
model (Lewis, 1993) with the specular exponent selected
from tables in Westlund and Meyer (2001) so as to simulate
a particular ASTM standard 60 degree gloss value.

3.0 Overview of Graphics Shading Hardware

Before discussing how the metallic reflection model was
implemented in our interactive design program, we provide
some background on the development of computer graphics
shading hardware. Until recently, computer graphics shading
hardware was quite limited in its capabilities. There was
only a single simple reflection model available (the Phong
model), this model could only be evaluated at the vertices of
a triangular mesh, and the interior of each triangle had to be
filled in by interpolation. This shading approach, called
Gouraud shading, was good enough for traditional Computer
Aided Geometric Design, but it is too limited for CACAD.

Over the last decade advanced texture mapping
techniques such as environment mapping and BRDF
decomposition have provided some alternatives to simple
Gouraud shading. Some of these methods achieved their
results by making creative use of the limited functional
extensions provided by video card manufacturers. Although
these advanced texture mapping techniques can be rendered
in real-time, most require a preprocessing step that cannot be
computed in real-time.

The recent increased availability and capability of
programmable shaders is a big advancement in computer
graphics hardware relative to CACAD. This improvement
makes it possible to replace the default shading model
computed at the vertices of triangles, and to also do a per
pixel calculation across the face of each triangle. Since
programmable shaders can be passed variables, this allows
for real-time rendering and design of arbitrary reflection
models.

3.1 Environment Mapping
Texture mapping was originally introduced to enhance

Gouraud shaded scenes. The diffuse color rendered with
Gouraud shading can be modulated by an image or texture
map. In effect, using a texture map in this manner is like
applying vinyl wallpaper or wood veneer to a surface.

Environment mapping makes use of texture mapping
hardware to simulate a perfect mirror surface reflection.
From the eye, the reflected vector off the surface is
computed and used to index into an environment map. The
environment map can hold an image of the sky and other
landscape around the object to simulate ray tracing. It can
also hold images of light sources, to simulate area light
source reflections or approximate per pixel Phong lighting.
Finally, the environment map can be pre-filtered to simulate
how a non-perfect mirror surface will naturally scatter light.

3.2 BRDF Decomposition
A BRDF is a function which describes the ratio of

incoming light to outgoing light for every possible incoming
and outgoing light direction. This is the most general way of

specifying surface reflection. It is, however, a complicated
four dimensional function, making it impractical for
interactive rendering.

Kautz and McCool (1999) present an ingenious method
of approximating arbitrary BRDFs thereby allowing them to
be rendered in real-time. In their approach, the four
dimensional BRDF is represented as the sum of products of
two dimensional matrices. These matrices can be encoded as
texture maps and the rendering can be accelerated using
hardware extensions.

The use of separable BRDF decomposition is a step
towards CACAD since it allows interactive display of
arbitrary BRDFs. We utilized this technique in an earlier
version of our program. However, because the
decomposition can’t be done at interactive rates, this method
isn’t suitable for use in an interactive design tool. For
interactive design it is important for the rendering to
immediately update as changes are made to the BRDF.

3.3 Programmable Shaders
Programmable shaders allow an arbitrary shading model

to be evaluated, on every refresh cycle, at each pixel of the
display screen. However, the shading model must be
uploaded to the video card in a video card specific machine
language. Although the machine language can be difficult to
program, development tools permit the shader to be written
in a portable high level language similar to C and compiled
into machine language. Some of the emerging standards for
writing vertex and pixel shaders are OpenGL 2.0, NVIDIA
CG, and DirectX 9.0.

A programmable shader has two separate parts: a vertex
shader and a pixel shader. The vertex shader has access to
the vertex position, vertex normal, transformation matrices,
and light position, as well as user definable per vertex and
per object parameters. The vertex shader’s input parameters
are evaluated at the vertices of an object’s triangle mesh.
The vertex shader’s output values are interpolated across the
inside of each mesh triangle, and the pixel shader takes these
values as input and evaluates the rest of the reflection model.
In addition, the pixel shader can access texture maps. The
final color for the pixel is rendered to the screen by the pixel
shader.

The number of instructions that the vertex and pixel
shaders can execute is a limiting factor in designing
programmable shaders. Depending on the video card, 128 to
1024 machine instructions can be evaluated in the vertex
shader and on the order of 128 machine instructions can be
executed in the pixel shader. Any part of the reflection
model that can be linearly interpolated should be put in the
vertex shader, to offload work from the pixel shader.
Fortunately, since the video card market is highly
competitive, the vertex and pixel shader instruction limit is
rapidly increasing.

Programmable shaders are a big step forward in making
CACAD a reality. If we can model a complex color
appearance using a programmable shader, we can
interactively render objects that have this color appearance.
Since programmable shaders can be passed variables, the

IS&T/SID Eleventh Color Imaging Conference

18

interactive design of complex color appearances becomes
possible.

4.0 Rendering the Metallic Reflection Model

The implementation of our metallic reflection model,
discussed in section 2.0, makes extensive use of
environment mapping and programmable shaders. We use a
vertex shader to evaluate the second degree Lab polynomials
and to convert the Lab values to RGB space. Using a
prefiltered environment map computed offline, the pixel
shader determines the first surface reflection and mixes this
with the color interpolated from the vertex shader. Finally
this is displayed on the screen.

We use prefiltered environment maps in order to
simulate a first surface reflection that is dependent on the
gloss value. Since pre-filtering the environment map takes a
long time, it is computed offline for the entire range of gloss
values. The gloss values are converted into Phong specular
highlight parameters by a method introduced by Westlund
and Meyer (2001). The environment map is filtered with the
Phong highlight parameters using a simple method discussed
in Akenine-Moller and Haines (2002). These prefiltered
environment maps are saved to disk and can be loaded very
quickly as the user changes gloss values during rendering.
Next an area light source, also filtered by the Phong
coefficients, is inserted into the prefiltered environment
map. This is uploaded to the video card for use in the pixel
shader.

As a three-dimensional object is rendered, the triangles
it is composed of are sent to the vertex shader. The vertex
shader takes as inputs the Lab polynomial, the vertex
position, vertex normal, viewer direction, and the light
direction. The aspecular angle between the viewer and the
reflected direction of the light source is computed. The
aspecular angle is clamped to be between zero and the clamp
point of the Lab polynomials. This clamped aspecular angle
is used to evaluate the Lab polynomial. Noting the reference
white point, the Lab values are converted into XYZ space.
Noting the monitor’s white point, phosphor chromaticity,
and gamma, the XYZ values are converted to RGB. The
RGB color and the vertex normal is output to the pixel
shader.

As vertices of the triangles are sent through the vertex
shader, the vertex shader’s output values are interpolated
across the inside of the triangles and passed to the pixel
shader. The pixel shader computes the reflected vector from
the viewer and uses this to index the reflection map for the
current gloss value. Finally this reflected color is mixed with
the vertex color and rendered to the screen.

Figure 2. The user interface.

5.0 Interface

This section is a description of the graphical user interface
(GUI) components for the design of goniochromatic colors.
The components discussed below are the L, a, and b plots,
the Hue Saturation Brightness control, the Face, Flop, and
Travel Picker, the Variations mode, the Gloss slider, and the
Color Palette. Before we talk about the individual
components of the user interface we should mention some of
our design goals. Our program must be made useable for a
wide range of users, including chemists, designers, and
consumers. Our main issue with designing a user interface is
how to control the complicated definition of the surface
appearance in a user friendly way. On one hand we would
like to give the user access to the complete range of colors
possible, but on the other hand we should avoid
overwhelming the user with a complicated interface. Our
software explores a variety of options for designing
goniochromatic colors, where some methods are more
appropriate for certain types of users than others. Many
ideas were taken from methods of dealing with traditional
monochromatic colors and extended to work with the family
of colors that defines a color shift.

5.1 Data Point Editor
The program’s internal representation of a

goniochromatic color consists of data points interpolated in
Lab space as a clamped quadratic polynomial. Displaying
these data points on separate L, a, and b plots, and allowing
the user to move the data points up and down, provides a
very rudimentary way of interacting with the color definition
(see Figure 2).

IS&T/SID Eleventh Color Imaging Conference

19

Figure 3. Hue and saturation control

.

As a point is moved, the clamped quadratic polynomial
that interpolates the data points is updated in real-time.

It is difficult for most users to relate the separate L, a,
and b curves to the final color they represent. Combined, a
and b define the hue and saturation of a color while L by
itself corresponds to the color’s brightness. A color wheel
superimposed over an a versus b plot permits the user to edit
the individual data points in the familiar space of hue and
saturation. The one dimensional a and b components are
combined to become a two dimensional set of data points on
the a versus b plot. This locus of data points forms a slightly
curved line through a versus b space. The colors that the
locus passes through represent the goniochromatic color
shift across aspecular angles.

Editing the data points directly is tedious since the
goniochromatic color can be sampled at several different
viewing angles in Lab space. Defining a completely new
color requires the user to move many data points. As a
result, the main use of this control would be to enter color
data sampled from a goniospectrophotometer.

5.2 Hue, Saturation, and Brightness Control
The color shift of a traditional metallic automotive color

consists primarily of a change in saturation and brightness
while hue remains constant. This can be seen in Figure 3
where the locus of points for a metallic red can be
approximated by a straight line that extends radially outward
from the center of the a versus b plot. This is a line of
constant hue on the a versus b diagram.

The hue, saturation, and brightness control allows the
user to edit, as a group, the family of colors that defines a
goniochromatic color shift. Moving the saturation control in

and out from the center of the a versus b plot changes the
average saturation. Adjusting the angle of the hue control
rotates the color to a new average hue. This is implemented
using rotate and scale linear transformations upon the
original data points. The resulting color appearance will
have a different color, but it will retain the relative spacing
between the color control points. The user manipulates
brightness by moving a line drawn through the average value
of the L plot.

The hue, saturation, and brightness method is useful for
adjusting a traditional metallic paint to see what it would
look like in a different hue. This approach has the
disadvantage of only permitting the user to change the
average hue and saturation; it does not allow the user to
independently adjust the color appearance across different
viewing angles.

5.3 Face, Flop, and Travel Color Picker
The locus of data points on the a versus b plot forms a

straight line segment through ab space. The face, flop, and
travel color picker allows the user to control the endpoints
of the locus individually as well as move the entire locus
around as a unit. Face, flop, and travel colors correspond
directly to the control points of the clamped quadratic
polynomials used to represent a goniochromatic color.

The user interface displays an arrow on the a versus b
plot that corresponds to the control points of the a and b
clamped quadratic polynomials as seen in Figure 4. The
arrowhead is positioned on the face color and can be moved
to define the color that occurs in the specular direction. The
base of the arrow is situated on the flop color and can be
adjusted to establish the color that is produced far away
from specular. The arrow can also be dragged as a complete
unit. Controls for the face and flop colors are also displayed

Figure 4. Modifying a color by its control points.

IS&T/SID Eleventh Color Imaging Conference

20

on the L, a, and b plots. The travel can be modified through
the L, a, and b plots by dragging the flop/travel control
horizontally.

This method is the best way to design a metallic color
with dramatic changes between the face and flop colors.
These “effect” colors are becoming more commonplace as
paint technology continues to improve. Since this method of
dragging the ends of the arrowhead and adjusting the control
points on the L, a, and b plots are complex tasks, the face,
flop, and travel color picker may be difficult for people
without training.

5.4 Variations Control
We would like to have a method for designing a color

that allows a novice computer user full control over all
aspects of the color in a straightforward manner. The
Variations mode is simple yet powerful goal-oriented
approach for designing color. Starting with any color
definition, that color is rendered on an object surrounded by
variations on that color (see Figures 6 and 7). The user
clicks on any variation that is a closer match to the desired
appearance. The colors are then updated. This cycle is
continued until the user reaches a color with which they are
satisfied. Since there are so many variations on a color, the
variations are arranged into the categories face color, flop
color, and travel and gloss. The degree of variation can also
be modified by the user.

There are strengths and weakness to the Variations
method. This method is good for novice computer users,
since pointing to the variation they prefer and clicking is all
that is required. Since variations on all aspects of the color
definition are displayed, the variation mode is powerful
enough that a user can achieve any color that our system can
render. The main drawback is that it takes many clicks to
design a completely new color, so a person familiar with the
program’s other modes of operation may find variations too
tedious. Adobe Photoshop also has a variations mode. It is
worth noting that an artist suggested the use of this method.

Figure 6. Variations on the face color.

Figure 5. The color corresponding to Figure 4.

5.5 Gloss Control
To design gloss, the user moves a gloss slider from 0 to

100. The values are based on industry standards designed to
be perceptually uniform. From the single gloss value, the
program then chooses both the specular exponent and
weight parameters to the Phong model using a method that
was introduced by Westlund and Meyer (2001). The
specular exponent and weight are constrained so as to be
energy conserving.

5.6 Color Palette
Since a normal color palette does not convey the

information needed to fully describe the color shift and gloss
of a metallic paint, we must extend the idea of a color
palette to work with color shifting and gloss. We have
chosen to make a gradient bar that shows the color shift
across viewing angles. The gloss value is displayed by the
brightness of the border surrounding the color bar. This
allows the entire color description to be displayed in
compact form for display in a color palette.

Figure 7. Variations on the flop color.

IS&T/SID Eleventh Color Imaging Conference

21

6.0 Conclusions

An interactive program has been written to assist in the
design of new goniochromatic colors. The program is based
upon an existing reflection model for metallic automotive
paints that utilizes a second order curve to interpolate a set
of aspecular measurements. The designer is given an
interface that allows them to deal with the fact that
goniochromatic colors are not a single color but an entire
family of colors. One approach to the design problem treats
the group of colors as having an average hue, saturation, and
brightness. This is most successful for traditional solid
metallic colors and some simple pearlescent paints. Another
method provides the designer with interactive control over
the color found near the specular direction and the color
found far from it. This works best for the newer “effect”
paints that are becoming more commonplace. Finally, the
user of the program is given an interface that allows them to
easily see and select variations of the color that are the result
of small changes in the parameters of the model.

The goal of this research was to explore the user
interface for an interactive CACAD program that could be
tied to existing paint formulation software. This is similar to
how computer aided geometric design evolved, with a front
end interactive mechanical design program feeding its
results to back end stress and thermal analysis software. By
utilizing the best publicly available model for metallic
automotive paint we have tried to impose constraints on the
solution that improve the chances of manufacturability.
However, our program must incorporate a more
comprehensive model of effect paints to guarantee that the
more extreme goniochromatic colors can be fabricated.
Alternatively, based on practical knowledge of paint
formulation, one could provide the designer with specific
suggestions that steer them towards “reachable” colors. The
risk, of course, in constraining the solution too tightly is that
aesthetically interesting and physically plausible color
appearances will be overlooked and the full potential of
CACD to push back the boundaries of color appearance
design will not be realized.

Acknowledgements

The authors would like to thank DuPont Automotive
Products for providing paint samples and reflectance
measurements. Harold Westlund assisted in an initial
implementation of the metallic reflection model. This
research was partially funded by the National Institutes of
Standards and Technology, and was performed at the
University of Minnesota Digital Technology Center.

References

1. Tomas Akenine-Moller and Eric Haines, Real-Time
Rendering. Second Edition, A.K. Peters, 2002.

2. David H. Alman, Directional color measurement of metallic
flake finishes, In Proceedings of the ISCC Williamsburg
Conference on Appearance, pg. 53–56, (1987).

3. Jan Kautz and Michael D. McCool, Interactive rendering with
arbitrary brdfs using separable approximations, In Tenth
Eurographics Workshop on Rendering, pg. 281-292, (June
1999).

4. Robert Lewis, Making shaders more physically plausible,
Fourth Eurographics Workshop on Rendering, pp. 47-62.
(June 1993).

5. Gary W. Meyer, Computer aided color appearance design, In
Proceedings of the First International Conference on Color in
Graphics and Image Processing, (2000).

6. Gary W. Meyer, Harold B. Westlund, Peter A. Walker, and
Joseph P. Wingard, A Computer Graphic System for
Rendering Gonio-Apparent Colors. Proceedings of the AIC
Color 01 Congress, (2001).

7. Allan B. J. Rodrigues, Color vision in instrumental color
matching, 16th International Conference in Organic Coatings,
(1990).

8. Allan B. J. Rodrigues, Measurement of metallic and
pearlescent finishes, Die Farbe, 37:65-78, (1990).

9. Allan B. J. Rodrigues, Color and appearance measurement of
metallic and pearlescent finishes, ASTM Standardization
News, 23(10):68-72 (1995).

10. H. J. A. Saris, R. J. B. Gottenbos, and H. van Houwelingen,
Correlation between visual and instrumental colour
differences of metallic paint films, Color Research and
Applications, 15(4) (1990).

11. William H. Venable, A model for interpreting three-angle
measurements of flake finishes, In Proceedings of the ISCC
Williamsburg Conference on Appearance, Pages 57-60.
(1987).

12. Harold B. Westlund. Appearance Based Rendering, Master's
Thesis, University of Oregon, June 2001.

13. Harold B. Westlund and Gary W. Meyer, Applying
Appearance Standards to Light Reflection Models,
Proceedings of SIGGRAPH 2001, pp. 501-510. (2001).

Biography

Clement Shimizu received his B.S. degree in Mathematics
and is currently pursuing a graduate degree in Computer
Science from the University of Minnesota. He works as a
research assistant in Computer Graphics at the U of M
Digital Technology Center. His research interests include
hardware accelerated computer graphics techniques, BRDF
design and display, and Fourier analysis of audio.

IS&T/SID Eleventh Color Imaging Conference

22

