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Abstract 

An interactive program has been developed to assist in the 
design of new goniochromatic colors. The program gives the 
user a unique set of controls over a second order polynomial 
that defines these color families at a sequence of aspecular 
reflection angles. One approach, based on traditional 
metallic colors, allows the user to adjust the average hue, 
saturation, and brightness of all of the colors interpolated by 
the polynomial. Another method, appropriate for the newer 
effect colors, permits the designer to establish face and flop 
colors to be reached at either end of the interpolation. In a 
final technique, variations produced by adjusting model 
parameters can be evaluated and selected. 

1.0 Introduction 

Computer graphics is on the verge of being able to provide 
computer aided design tools to color appearance 
professionals. These tools will let industrial designers and 
color technologists have the same interactive control over 
color appearance that engineers and architects have had over 
geometry since the beginning of computer graphics almost 
forty years ago. The emergence of computer aided color 
appearance design (CACAD) will allow color appearance 
designers and scientists to examine how existing paints and 
coatings look on new products. More importantly, CACAD 
will make it possible to hypothesize and visualize new 
surface coatings with heretofore unseen reflection properties 
(Meyer, 2000). 

The recent computer graphic advance which has made 
this possible is the development of per pixel shading 
hardware that permits display, in real time, of objects with 
arbitrarily complex surface reflection functions. While 
earlier graphics devices evaluated a limited shading model at 
polygon vertices and interpolated the result across the 
polygon's interior, the new hardware can compute a complex 
reflectance model at every pixel that composes a polygon. 
This makes it feasible to treat surface reflection in a very 
general manner, including the use of a bidirectional 
reflectance distribution function (BRDF) (Heidrich and 
Seidel, 1999; Kautz and McCool, 1999) and wavelength 
based color calculations. 

While the ability of computer graphics hardware to 
display complex surface reflection has been improving, new 
“effect” paints are being developed for use in a variety of 
different design applications. These so-called 

goniochromatic colors have the property that the color of the 
reflected light changes with the angle of reflectance. 
Metallic and pearlescent automotive paints are two examples 
that are in wide use. The appearance of these paints is 
difficult to characterize because a single color measurement 
is not sufficient. This complicates the job of a designer who 
invents new goniochromatic colors, because they must 
specify not just one color but a whole family of colors. 

In this paper we describe an initial attempt to develop a 
CACAD program for designing and visualizing hypothetical 
goniochromatic colors. The work is based upon an existing 
reflection model for metallic paint which assumes that the 
variation in metallic color with reflectance angle can be fit 
with a second order polynomial. The program gives the 
designer several unique ways to modify this second order 
curve. These techniques range from editing the individual 
data points to which the curve is fit, to adjusting the average 
hue and saturation of the color represented by the curve, to 
selecting the so-called face and flop colors that the curve 
must interpolate near specular and far from specular. The 
program uses per pixel shading hardware to allow the 
designer to see the new color in real time on a three 
dimensional surface. The new color’s variation in 
reflectance with aspecular angle can be written to a file for 
manufacturability analysis. 

2.0 Metallic Reflection Models 

It is well known in the field of computer graphics that the 
reflection of metallic objects is primarily specular (Cook and 
Torrance, 1982). In terms of appearance, this means that 
metallic surfaces appear brightest when viewed in the 
specular direction and become much darker as the line of 
sight shifts away from specular. Metallic paints exhibit this 
property even though it results from a directional diffuse 
component that comes from below the surface. The paint 
and coatings industries refer to how lightness changes with 
viewing direction as the flop or travel of the color. This 
property of metallic colors accentuates an object's curvature 
and may account for the popularity of metallic automotive 
finishes (Rodrigues, 1995). 

Our program employs a shader that can render the 
appearance of a metallic paint from a limited number of 
spectraphotometric measurements. Alman (1987) performed 
a systematic study of metallic paint which revealed that only 
a few data points need to be taken in order to characterize a 
metallic color's flop. He found that a second order 
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polynomial could successfully interpolate CIE Lab color 
coordinates derived from in plane goniospectrophotometric 
measurements. To fit the curve, he suggested that only 
measurements at specular, near grazing, and one angle in 
between were necessary. Others confirmed his results 
(Rodrigues, 1990; Saris, et al., 1990; Venable, 1987). We 
utilize a shader that can interpolate a set of such 
measurements and render the appearance of metallic 
automotive paint (Westlund and Meyer, 2001). 

2.1 Control of the Metallic Reflection Model 
In the program, a metallic color is represented using a 

quadratic curve that plots the reflected Lab tristimulus 
values of the color as a function of the angle θ from the 
specular direction (the aspecular angle). This curve is 
initially determined using measured data points from an 
existing metallic color. The user interface, described in 
Section 5.0, allows the data points to be adjusted and the 
curve to be refit. The curve itself is represented as a clamped 
quadratic polynomial. The control points of this type of 
curve provide a different way for the user to change the 
shape of the curve and define a new metallic color. 

A clamped quadratic polynomial is a two piece 
function. The first piece is a parabolic curve from angle zero 
to the apex of the parabola, referred to here as the clamp 
point. The second piece starts at the apex and remains a 
constant value across the remaining angles. The control 
points of the clamped quadratic polynomial occur at the 
angle zero and the apex of the quadratic. In the context of 
automotive paint, this means that the goniochromatic color 
shifts at a quadratic rate through a range of off specular 
angles, and the color remains constant for the rest of the 
angles. 

Face is the name for the color at angles close to 
specular. Flop is the name for the base color or the color that 
appears at viewing angles far from specular. Travel refers to 
the rate at which the color shifts from face to flop. Flop, 
face, and travel colors directly correspond to the control 
points of the clamped quadratic polynomial defining our 
internal representation of color. 
Since the user interface uses data points, clamped 
quadratics, and control points all to represent the same color 
appearance, it is necessary to convert information between 
the three modes. Using a least squares approximation 
method, the coefficients to the clamped quadratic 
polynomials can be found that best interpolate a set of data 
points. It is important that the least squares approximation 
method fits the clamped quadratic curve to the data points, 
and not to a standard quadratic polynomial. The clamped 
quadratic polynomial can be evaluated at specific angles to 
obtain new data points. Evaluating the clamped quadratic 
polynomial at the angle zero and the apex of the quadratic 
give the control points. The clamped quadratic can be solved 
for directly given its control points. We work through the 
mathematical details only for the L curve, but the a and b 
curves are done similarly. 

 

Figure 1. The clamped quadratic curve’s data points are shown as 
black dots and control points are shown in yellow. 
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Setting the derivative of the quadratic polynomial to be 
zero and solving for θ, we can find the clamp point so we 
can evaluate the clamped quadratic polynomials. 
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We specify the control points of the L, a, and b curves 
to be (0, L(0)) and (θClamp, L(θClamp)). Normally three control 
points would be needed to define a quadratic polynomial, 
but since a quadratic polynomial is symmetric about its 
apex, the clamp point counts for two control points. In order 
to obtain the clamped quadratic polynomial from the control 
points, insert the control points into the quadratic formula 
and solve for the coefficients. The solution is shown below. 
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2.2 Complete Metallic Reflection Model 
Our program implements an interactive version of the 

metallic reflection model developed by Westlund and Meyer 
(2001). This model treats the overall reflection from a 
metallic paint as a simple linear combination of a subsurface 
and a first surface reflection. The subsurface reflection is 
modeled using the clamped second order polynomial 
described in Section 2.1. Because we start with Lab data, a 
tristimulus version of a BRDF is constructed from the three 
separate L, a, and b curves. This BRDF is addressed using 
the aspecular angle θ determined from 

acos(( 2 *( )) )i i rnθ θ θ θ= − − •     (4) 

where θi is the incident direction, θr is the reflection 
direction, and n  is the surface normal. The first surface 
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reflection is modeled using a modified Phong reflection 
model (Lewis, 1993) with the specular exponent selected 
from tables in Westlund and Meyer (2001) so as to simulate 
a particular ASTM standard 60 degree gloss value. 

3.0 Overview of Graphics Shading Hardware 

Before discussing how the metallic reflection model was 
implemented in our interactive design program, we provide 
some background on the development of computer graphics 
shading hardware. Until recently, computer graphics shading 
hardware was quite limited in its capabilities. There was 
only a single simple reflection model available (the Phong 
model), this model could only be evaluated at the vertices of 
a triangular mesh, and the interior of each triangle had to be 
filled in by interpolation. This shading approach, called 
Gouraud shading, was good enough for traditional Computer 
Aided Geometric Design, but it is too limited for CACAD. 

Over the last decade advanced texture mapping 
techniques such as environment mapping and BRDF 
decomposition have provided some alternatives to simple 
Gouraud shading. Some of these methods achieved their 
results by making creative use of the limited functional 
extensions provided by video card manufacturers. Although 
these advanced texture mapping techniques can be rendered 
in real-time, most require a preprocessing step that cannot be 
computed in real-time. 

The recent increased availability and capability of 
programmable shaders is a big advancement in computer 
graphics hardware relative to CACAD. This improvement 
makes it possible to replace the default shading model 
computed at the vertices of triangles, and to also do a per 
pixel calculation across the face of each triangle. Since 
programmable shaders can be passed variables, this allows 
for real-time rendering and design of arbitrary reflection 
models.  

3.1 Environment Mapping 
Texture mapping was originally introduced to enhance 

Gouraud shaded scenes. The diffuse color rendered with 
Gouraud shading can be modulated by an image or texture 
map. In effect, using a texture map in this manner is like 
applying vinyl wallpaper or wood veneer to a surface.  

Environment mapping makes use of texture mapping 
hardware to simulate a perfect mirror surface reflection. 
From the eye, the reflected vector off the surface is 
computed and used to index into an environment map. The 
environment map can hold an image of the sky and other 
landscape around the object to simulate ray tracing. It can 
also hold images of light sources, to simulate area light 
source reflections or approximate per pixel Phong lighting. 
Finally, the environment map can be pre-filtered to simulate 
how a non-perfect mirror surface will naturally scatter light.  

3.2 BRDF Decomposition 
A BRDF is a function which describes the ratio of 

incoming light to outgoing light for every possible incoming 
and outgoing light direction. This is the most general way of 

specifying surface reflection. It is, however, a complicated 
four dimensional function, making it impractical for 
interactive rendering. 

Kautz and McCool (1999) present an ingenious method 
of approximating arbitrary BRDFs thereby allowing them to 
be rendered in real-time. In their approach, the four 
dimensional BRDF is represented as the sum of products of 
two dimensional matrices. These matrices can be encoded as 
texture maps and the rendering can be accelerated using 
hardware extensions. 

The use of separable BRDF decomposition is a step 
towards CACAD since it allows interactive display of 
arbitrary BRDFs. We utilized this technique in an earlier 
version of our program. However, because the 
decomposition can’t be done at interactive rates, this method 
isn’t suitable for use in an interactive design tool. For 
interactive design it is important for the rendering to 
immediately update as changes are made to the BRDF. 

3.3 Programmable Shaders 
Programmable shaders allow an arbitrary shading model 

to be evaluated, on every refresh cycle, at each pixel of the 
display screen. However, the shading model must be 
uploaded to the video card in a video card specific machine 
language. Although the machine language can be difficult to 
program, development tools permit the shader to be written 
in a portable high level language similar to C and compiled 
into machine language. Some of the emerging standards for 
writing vertex and pixel shaders are OpenGL 2.0, NVIDIA 
CG, and DirectX 9.0. 

A programmable shader has two separate parts: a vertex 
shader and a pixel shader. The vertex shader has access to 
the vertex position, vertex normal, transformation matrices, 
and light position, as well as user definable per vertex and 
per object parameters. The vertex shader’s input parameters 
are evaluated at the vertices of an object’s triangle mesh. 
The vertex shader’s output values are interpolated across the 
inside of each mesh triangle, and the pixel shader takes these 
values as input and evaluates the rest of the reflection model. 
In addition, the pixel shader can access texture maps. The 
final color for the pixel is rendered to the screen by the pixel 
shader. 

The number of instructions that the vertex and pixel 
shaders can execute is a limiting factor in designing 
programmable shaders. Depending on the video card, 128 to 
1024 machine instructions can be evaluated in the vertex 
shader and on the order of 128 machine instructions can be 
executed in the pixel shader. Any part of the reflection 
model that can be linearly interpolated should be put in the 
vertex shader, to offload work from the pixel shader. 
Fortunately, since the video card market is highly 
competitive, the vertex and pixel shader instruction limit is 
rapidly increasing. 

Programmable shaders are a big step forward in making 
CACAD a reality. If we can model a complex color 
appearance using a programmable shader, we can 
interactively render objects that have this color appearance. 
Since programmable shaders can be passed variables, the 
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interactive design of complex color appearances becomes 
possible. 

4.0 Rendering the Metallic Reflection Model 

The implementation of our metallic reflection model, 
discussed in section 2.0, makes extensive use of 
environment mapping and programmable shaders. We use a 
vertex shader to evaluate the second degree Lab polynomials 
and to convert the Lab values to RGB space. Using a 
prefiltered environment map computed offline, the pixel 
shader determines the first surface reflection and mixes this 
with the color interpolated from the vertex shader. Finally 
this is displayed on the screen. 

We use prefiltered environment maps in order to 
simulate a first surface reflection that is dependent on the 
gloss value. Since pre-filtering the environment map takes a 
long time, it is computed offline for the entire range of gloss 
values. The gloss values are converted into Phong specular 
highlight parameters by a method introduced by Westlund 
and Meyer (2001). The environment map is filtered with the 
Phong highlight parameters using a simple method discussed 
in Akenine-Moller and Haines (2002). These prefiltered 
environment maps are saved to disk and can be loaded very 
quickly as the user changes gloss values during rendering. 
Next an area light source, also filtered by the Phong 
coefficients, is inserted into the prefiltered environment 
map. This is uploaded to the video card for use in the pixel 
shader. 

As a three-dimensional object is rendered, the triangles 
it is composed of are sent to the vertex shader. The vertex 
shader takes as inputs the Lab polynomial, the vertex 
position, vertex normal, viewer direction, and the light 
direction. The aspecular angle between the viewer and the 
reflected direction of the light source is computed. The 
aspecular angle is clamped to be between zero and the clamp 
point of the Lab polynomials. This clamped aspecular angle 
is used to evaluate the Lab polynomial. Noting the reference 
white point, the Lab values are converted into XYZ space. 
Noting the monitor’s white point, phosphor chromaticity, 
and gamma, the XYZ values are converted to RGB. The 
RGB color and the vertex normal is output to the pixel 
shader. 

As vertices of the triangles are sent through the vertex 
shader, the vertex shader’s output values are interpolated 
across the inside of the triangles and passed to the pixel 
shader. The pixel shader computes the reflected vector from 
the viewer and uses this to index the reflection map for the 
current gloss value. Finally this reflected color is mixed with 
the vertex color and rendered to the screen. 

  
 

 

Figure 2. The user interface. 

5.0 Interface 

This section is a description of the graphical user interface 
(GUI) components for the design of goniochromatic colors. 
The components discussed below are the L, a, and b plots, 
the Hue Saturation Brightness control, the Face, Flop, and 
Travel Picker, the Variations mode, the Gloss slider, and the 
Color Palette. Before we talk about the individual 
components of the user interface we should mention some of 
our design goals. Our program must be made useable for a 
wide range of users, including chemists, designers, and 
consumers. Our main issue with designing a user interface is 
how to control the complicated definition of the surface 
appearance in a user friendly way. On one hand we would 
like to give the user access to the complete range of colors 
possible, but on the other hand we should avoid 
overwhelming the user with a complicated interface. Our 
software explores a variety of options for designing 
goniochromatic colors, where some methods are more 
appropriate for certain types of users than others. Many 
ideas were taken from methods of dealing with traditional 
monochromatic colors and extended to work with the family 
of colors that defines a color shift. 

5.1 Data Point Editor 
The program’s internal representation of a 

goniochromatic color consists of data points interpolated in 
Lab space as a clamped quadratic polynomial. Displaying 
these data points on separate L, a, and b plots, and allowing 
the user to move the data points up and down, provides a 
very rudimentary way of interacting with the color definition 
(see Figure 2).  
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Figure 3. Hue and saturation control 

. 

As a point is moved, the clamped quadratic polynomial 
that interpolates the data points is updated in real-time. 

It is difficult for most users to relate the separate L, a, 
and b curves to the final color they represent. Combined, a 
and b define the hue and saturation of a color while L by 
itself corresponds to the color’s brightness. A color wheel 
superimposed over an a versus b plot permits the user to edit 
the individual data points in the familiar space of hue and 
saturation. The one dimensional a and b components are 
combined to become a two dimensional set of data points on 
the a versus b plot. This locus of data points forms a slightly 
curved line through a versus b space. The colors that the 
locus passes through represent the goniochromatic color 
shift across aspecular angles. 

Editing the data points directly is tedious since the 
goniochromatic color can be sampled at several different 
viewing angles in Lab space. Defining a completely new 
color requires the user to move many data points. As a 
result, the main use of this control would be to enter color 
data sampled from a goniospectrophotometer. 

5.2 Hue, Saturation, and Brightness Control 
The color shift of a traditional metallic automotive color 

consists primarily of a change in saturation and brightness 
while hue remains constant. This can be seen in Figure 3 
where the locus of points for a metallic red can be 
approximated by a straight line that extends radially outward 
from the center of the a versus b plot. This is a line of 
constant hue on the a versus b diagram. 

The hue, saturation, and brightness control allows the 
user to edit, as a group, the family of colors that defines a 
goniochromatic color shift. Moving the saturation control in 

and out from the center of the a versus b plot changes the 
average saturation. Adjusting the angle of the hue control 
rotates the color to a new average hue. This is implemented 
using rotate and scale linear transformations upon the 
original data points. The resulting color appearance will 
have a different color, but it will retain the relative spacing 
between the color control points. The user manipulates 
brightness by moving a line drawn through the average value 
of the L plot. 

The hue, saturation, and brightness method is useful for 
adjusting a traditional metallic paint to see what it would 
look like in a different hue. This approach has the 
disadvantage of only permitting the user to change the 
average hue and saturation; it does not allow the user to 
independently adjust the color appearance across different 
viewing angles. 

5.3 Face, Flop, and Travel Color Picker 
The locus of data points on the a versus b plot forms a 

straight line segment through ab space. The face, flop, and 
travel color picker allows the user to control the endpoints 
of the locus individually as well as move the entire locus 
around as a unit. Face, flop, and travel colors correspond 
directly to the control points of the clamped quadratic 
polynomials used to represent a goniochromatic color. 

The user interface displays an arrow on the a versus b 
plot that corresponds to the control points of the a and b 
clamped quadratic polynomials as seen in Figure 4. The 
arrowhead is positioned on the face color and can be moved 
to define the color that occurs in the specular direction. The 
base of the arrow is situated on the flop color and can be 
adjusted to establish the color that is produced far away 
from specular. The arrow can also be dragged as a complete 
unit. Controls for the face and flop colors are also displayed 

 

Figure 4. Modifying a color by its control points. 
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on the L, a, and b plots. The travel can be modified through 
the L, a, and b plots by dragging the flop/travel control 
horizontally. 

This method is the best way to design a metallic color 
with dramatic changes between the face and flop colors. 
These “effect” colors are becoming more commonplace as 
paint technology continues to improve. Since this method of 
dragging the ends of the arrowhead and adjusting the control 
points on the L, a, and b plots are complex tasks, the face, 
flop, and travel color picker may be difficult for people 
without training. 

5.4 Variations Control 
We would like to have a method for designing a color 

that allows a novice computer user full control over all 
aspects of the color in a straightforward manner. The 
Variations mode is simple yet powerful goal-oriented 
approach for designing color. Starting with any color 
definition, that color is rendered on an object surrounded by 
variations on that color (see Figures 6 and 7). The user 
clicks on any variation that is a closer match to the desired 
appearance. The colors are then updated. This cycle is 
continued until the user reaches a color with which they are 
satisfied. Since there are so many variations on a color, the 
variations are arranged into the categories face color, flop 
color, and travel and gloss. The degree of variation can also 
be modified by the user. 

There are strengths and weakness to the Variations 
method. This method is good for novice computer users, 
since pointing to the variation they prefer and clicking is all 
that is required. Since variations on all aspects of the color 
definition are displayed, the variation mode is powerful 
enough that a user can achieve any color that our system can 
render. The main drawback is that it takes many clicks to 
design a completely new color, so a person familiar with the 
program’s other modes of operation may find variations too 
tedious. Adobe Photoshop also has a variations mode. It is 
worth noting that an artist suggested the use of this method. 

 

Figure 6. Variations on the face color. 

 

Figure 5. The color corresponding to Figure 4. 

5.5 Gloss Control 
To design gloss, the user moves a gloss slider from 0 to 

100. The values are based on industry standards designed to 
be perceptually uniform. From the single gloss value, the 
program then chooses both the specular exponent and 
weight parameters to the Phong model using a method that 
was introduced by Westlund and Meyer (2001). The 
specular exponent and weight are constrained so as to be 
energy conserving.  

5.6 Color Palette 
Since a normal color palette does not convey the 

information needed to fully describe the color shift and gloss 
of a metallic paint, we must extend the idea of a color 
palette to work with color shifting and gloss. We have 
chosen to make a gradient bar that shows the color shift 
across viewing angles. The gloss value is displayed by the 
brightness of the border surrounding the color bar. This 
allows the entire color description to be displayed in 
compact form for display in a color palette. 

 
 

 

Figure 7. Variations on the flop color. 
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6.0 Conclusions 

An interactive program has been written to assist in the 
design of new goniochromatic colors. The program is based 
upon an existing reflection model for metallic automotive 
paints that utilizes a second order curve to interpolate a set 
of aspecular measurements. The designer is given an 
interface that allows them to deal with the fact that 
goniochromatic colors are not a single color but an entire 
family of colors. One approach to the design problem treats 
the group of colors as having an average hue, saturation, and 
brightness. This is most successful for traditional solid 
metallic colors and some simple pearlescent paints. Another 
method provides the designer with interactive control over 
the color found near the specular direction and the color 
found far from it. This works best for the newer “effect” 
paints that are becoming more commonplace. Finally, the 
user of the program is given an interface that allows them to 
easily see and select variations of the color that are the result 
of small changes in the parameters of the model. 

The goal of this research was to explore the user 
interface for an interactive CACAD program that could be 
tied to existing paint formulation software. This is similar to 
how computer aided geometric design evolved, with a front 
end interactive mechanical design program feeding its 
results to back end stress and thermal analysis software. By 
utilizing the best publicly available model for metallic 
automotive paint we have tried to impose constraints on the 
solution that improve the chances of manufacturability. 
However, our program must incorporate a more 
comprehensive model of effect paints to guarantee that the 
more extreme goniochromatic colors can be fabricated. 
Alternatively, based on practical knowledge of paint 
formulation, one could provide the designer with specific 
suggestions that steer them towards “reachable” colors. The 
risk, of course, in constraining the solution too tightly is that 
aesthetically interesting and physically plausible color 
appearances will be overlooked and the full potential of 
CACD to push back the boundaries of color appearance 
design will not be realized. 
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