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Abstract 

We propose a new method for color demosaicing based on a 
mathematical model of spatial multiplexing of color. We 
demonstrate that a one-color per pixel image can be written 
as the sum of luminance and chrominance. In case of a 
regular arrangement of colors, such as with the Bayer color 
filter array (CFA), luminance and chrominance are well 
localized in the spatial frequency domain. Our algorithm is 
based on selecting the luminance and chrominance signal in 
the Fourier domain. This simple and efficient algorithm 
gives good results, comparable with the Bayesian approach 
to demosaicing. Additionally, this model allows us to 
demonstrate that the Bayer CFA is the most optimal 
arrangement of three colors on a square grid. Visual 
artifacts of the reconstruction can be clearly explained as 
aliasing between luminance and chrominance. Finally, this 
framework also allows us to control the trade-off between 
algorithm efficiency and quality in an explicit manner. 

1. Introduction 

Today, most consumer digital cameras capture an image 
with a single CCD chip to minimize cost and size of the 
camera. To retain color information, a color filter array 
(CFA) is placed before the CCD. As a result, there is only 
one color sensitivity (red, green or blue) available at each 
spatial location. But for viewing, editing and printing, three 
colors per pixel (red, green, and blue) are necessary, and 
therefore reconstructed and available as the output of the 
camera. Color demosaicing refers to the algorithms that 
allow recreating a three-color per pixel image from a one-
color per pixel image. 

The most common spatial arrangement of color filters 
is called the Bayer CFA, named after its inventor1 (see 
Figure 1). This CFA has two times more green than red and 
blue filters. It is composed of alternate lines of two colors: 
red/green on odd lines, and blue/green on even lines. 

The demosaicing method we propose is not restricted to 
this arrangement of color filters. However, the Bayer CFA 
pattern is optimal in terms of spatial frequency 
representation when arranging three colors on a square grid, 
as will be discussed in section 2.3.  

 

= + +
 

Figure 1. The Bayer CFA and the corresponding red, green and 
blue color grids. 

 
Creating a three-color per pixel image from a one-color 

per pixel image can be seen as an interpolation problem.2, 12,13 
Demosaicing algorithms should reconstruct missing colors. 
The simplest and most efficient way for demosaicing is the 
bilinear interpolation. The following convolution filters can 
easily be implemented in a camera-internal processor, such 
as a DSP, to compute the interpolation efficiently. 
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FR,B is the bilinear interpolation filter for the red and blue 
grids, and FG is the interpolation filter for the green grid.  

Figure 2 shows an example of such a bilinear 
interpolation. On the left is the original three-color per pixel 
image, in the middle the sub-sampled color pixels according 
to the Bayer CFA, and on the right the image reconstructed 
with the bilinear interpolation filters of equation (1). The 
interpolated image shows two artifacts inherent to 
demosaicing: blurring and the generation of false color, also 
called color aliasing. 
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Figure 2. Example of a bilinear interpolation computed with 
convolution filters. Left: the original image (sub-sampled by a 
factor of 2 in the horizontal and the vertical direction). Center: 
one-color per pixel image according to the Bayer CFA. Right: 
image reconstructed with bilinear interpolation. 

 
Several solutions have been published that improve this 

demosaicing result.2-18 Some use the concept of computing 
hue as the ratio of two colors.3-5 Assuming that hue does not 
change over the surface of an object, it is more reliable to 
interpolate color ratios instead of R, G, and B in terms of 
avoiding false color. This approach gives better results than 
bilinear interpolation, also in terms of reducing blurring. 
However, artifacts are still visible around the border of an 
object or in textured regions where the assumption of 
constant hue does not hold. 

 To avoid this problem, methods called template 
matching have been put forth5,6 that estimate edges in the 
Bayer CFA image and change the interpolation procedure 
according to edge behavior. This approach works quite well, 
despite the problem of having to choose a threshold for the 
estimation. However, the algorithm varies with the content 
of a particular image and can become computationally 
heavy. A variant of this approach uses median filtering 
instead of convolution filtering.11,14 

Another technique, proposed by Kimmel.10 uses 
gradient-based interpolation. This algorithm exploits the 
fact that at each missing pixel, the gradient is known from 
the existing neighboring pixels. The bilinear interpolation is 
then weighted by the estimated gradient. This differential 
method achieves good results except where the gradient is 
close or equal to zero. The algorithm requires three 
iterations and is computationally heavy. 

Methods using regularization theory7 or a Bayesian 
approach16,17 have also been published. Authors report good 
results, not easily reproducible, to the detriment of 
computational complexity. Taubman23 proposes a 
preconditioned efficient approach of Bayesian demosaicing 
that is used in some digital cameras today. 

Our approach is similar to the one found by Ingling and 
Martinez-Uriegas.19,20 They have developed a model of 
luminance and chrominance, and spatial and temporal 
multiplexing in the human retina. From this model, Crane et 
al. derived a color demosaicing algorithm.9 In this paper, we 
extend their work to include the relationship between spatial 
multiplexing and the spatial cone arrangement in the human 
retina. In particular, a mathematical framework was 
developed, which demonstrates the properties of spatial 
multiplexing of colors in the spatial frequency domain. This 

model, applied to regular arrangements of colors, such as a 
CFA, shows that luminance and opponent chromatic signals 
are well localized in the Fourier spectrum.21 

We use this spatial Fourier-transform information to 
develop a color demosaicing algorithm by selecting 
appropriate spatial frequencies corresponding to luminance 
and opponent chromatic signals. When considering spatial 
frequency localization of luminance and chrominance, we 
can also prove that the Bayer CFA is the optimal spatial 
arrangement of three colors on a square grid. Therefore, this 
CFA pattern is well designed for our algorithm. 

Recently, there have been efforts to understand how 
visual artifacts such as blurring and false colors are created 
in the reconstruction process, and methods have been 
proposed on how to minimize them.22 We will see that our 
approach facilitates the understanding of artifact generation, 
as they can be explained in terms of aliasing due to the 
interaction of luminance and chrominance signals. 

2. Spatial-Chromatic Sampling 

For one-chip color CCD cameras, only one color sensitivity 
per spatial location is available. With this kind of sensor, 
spatial and chromatic information are therefore intrinsically 
mixed. In section 2.2, we model this effect as a spatial 
multiplexing of color. In section 2.3, we demonstrate that 
this model has the property of localizing luminance and 
chrominance frequencies in the Fourier domain. In the first 
section, 2.1, we will define what we understand by 
luminance and chrominance signals. 

2.1 Luminance and Chrominance Definition 
Color images are defined by three-color components at 

each spatial location. This can be expressed as a vector of 
three dimensions for each pixel: 

    
Ci (x, y){ }, i ∈ R ,G, B[ ], (x , y ) ∈Ν2

  (2) 

Each color vector Ci corresponds to the sampling of 
spatially and spectrally variable input illuminance E(x,y,λ) 
through a spectral sensitivity function ϕi(λ) given by the 
photo-sensor characteristics. 

    
C i (x, y) = E(x, y, λ)ϕ i (λ )dλ

λ
∫                (3) 

It is generally accepted that the color triplets {Ci(x,y)} 
form a linear vector space of three dimensions. From this 
space, spatial information could be computed as a 
projection onto a one-dimensional axis. Any vector could be 
chosen as a support for this projection. Since all three-
wavelength domains are represented, the probability of 
detecting spatial information is independent of the 
wavelength domain it is contained in. Given the projection 
for spatial information, i.e. luminance, any color image 
could then be represented as the luminance value plus a 
vector of three-dimensions called chrominance. Figure 3 
shows an example of such decomposition on a three-color 
per pixel image. 
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Figure 3. Decomposition of a color image (left) into luminance 
(L=(R+G+B)/3) and chrominance ({R-L, G-L, B-L}). 

 
There are several luminance and chrominance defini-

tions in the literature, each applicable in a different context. 
In case of the human visual system, the CIE has normalized 
the photopic function V(λ) found to be representative of the 
human luminosity sensation. This function corresponds to a 
positive weighted sum of the sensitivity functions ϕL, ϕm and 
ϕS of the human cones L, M and S. 

In imaging, luminance is often defined to correspond as 
closely as possible to V(λ), and is calculated as a positive 
weighted sum of R, G and B. The weights are calculated to 
minimize the error between the luminance function and the 
photopic function V(λ). In the demosaicing community, 
luminance is usually assumed to correspond to the 
information carried by the green pixels, as the green 
sensitivity of the camera is closer to V(λ) than either red or 
blue. The fact that in the Bayer CFA, there are twice more 
green filters than red and blue is thought to improve the 
spatial acuity. But this is not necessarily correct because 
there is no real reason to consider that spatial information is 
only related to V(λ). For example, we will show that the 
spatial acuity is identical if we exchange green and red in 
the Bayer CFA. 

Let us start with the premise that luminance can be any 
weighted sum of R, G and B. We can then try to find the 
optimal weights such that the luminance channel carries the 
maximum spatial acuity or frequency resolution. For 
example, assume that we want to estimate luminance by a 
3x3 unitary symmetric convolution kernel with the 
constraint that the luminance signal would have exactly the 
same amount of R, G and B at each spatial location. There 
are three different 3x3 RGB patterns in the Bayer CFA, 
which result in two conditions. The remaining pattern, 
exchanging the position of blue and red, does not result in 
an additional condition. The third condition is that the filter 
is unitary: 
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Thus, if the luminance signal is defined as L = (R + 2G 
+ B)/4, the convolution kernel of equation (4) allows 
extracting the signal directly from the multiplexed image. 
Note that the weights of R, G and B for the calculation of 
the luminance are equal to the probability of the presence of 
each color on the CFA. Intuitively, this means that 
luminance is equal to the mean of R, G and B, estimated at 
each position from the neighborhood. 

It is evident that if we exchange, for example, the green 
and the red pixels in the Bayer CFA, the luminance will be 
calculated by L = (G + 2R + B)/4,.Intuitively, such a pattern 
layout will work as well as the arrangement in the original 
Bayer configuration for estimating luminance.  

Figure 4 shows the reconstruction of an image with the 
luminance estimated using the above convolution kernel. 
For a complete description of the algorithm, see section 3. 

 

 

Figure 4. Left: original image. Center: luminance image. Right: 
reconstructed image, the luminance estimated with the filter of 
equation (4). 

 
We see immediately that the luminance signal is better 

reconstructed compared to a bilinear interpolation: there are 
less blurring effects (compare figures 2 and 4). In the next 
section, we describe a model of multiplexing that formalizes 
this approach. 

2.2 Model Of Spatial Multiplexing of Colors 
We can find a mathematical formulation for the spatial 

multiplexing of color. First, we have to sub-sample the 
three-color image according to the CFA array, and then we 
project the three sub-sampled images into one image. If we 
call R(x,y) the spatial multiplexed image, we have: 

    
R(x, y) =

i
∑ Ci (x, y)m i (x, y)                    (5) 

where mi(x,y) are three modulation functions having a value 
of 1 if the color i is present at position (x,y)∈N

2 and 0 
otherwise. For the Bayer CFA shown in Figure 1, the 
modulation functions can be written as: 

    

m R (x, y) = (1 + cos(πx )) (1 + cos(πy)) / 4

m G (x, y) = (1 − cos(πx ) cos(πy )) / 2

m B (x , y ) = (1 − cos(πx )) (1 − cos(πy )) / 4

     (6) 

The modulation functions have a constant part equal to 
the probability of color presence in the CFA, pi, plus a 
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fluctuation part with null mean value     ̃  m i (x, y),  thus mi(x,y) 
= pi +    ̃  m i (x, y).  Therefore, we can rewrite R(x,y) as follows: 

    

R(x, y) = piCi (x, y)
i
∑

Lum (x,y )
� ��� ���

+ C i (x , y ) ˜ m i (x , y )
i

∑
Chr ( x,y )

� ���� ����

         (7) 

We decide to call the first part luminance, because it 
does not depend on the modulation functions at each spatial 
location. The second term is called chrominance, containing 
color information that is spatially sub-sampled. 

Equation (7) shows that it is possible to split spatial 
multiplexing of color into two signals. One is defined with 
the highest spatial frequency since it does not depend on the 
spatial location. However, it has no spectral behavior. The 
second signal changes with spatial location and defines a 
spectral difference. 

This “splitting” depends on the CFA under 
consideration. In the case of Bayer, where there is twice 
more green than blue or red, luminance should be defined as 
(R + 2G + B)/4 to allow for maximum resolution.  

2.3 Fourier Representation 
Given the formulation (equation 5) of the spatially 

multiplexed color image, we can compute its Fourier 
transform as: 
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where �⋅  represent the Fourier transform and * the 
convolution operator. The modulation functions defined in 
equation (6) are based on cosine functions and have their 
Fourier transforms expressed as Diracs: 
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These modulation functions localize luminance and 
chrominance in the frequency domain. Thus, the Fourier 
spectrum of a spatially multiplexed color image can be 
written as: 
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Figure 5 shows an example of the modulus of the fast 
Fourier transform (FFT) of a one-color per pixel image. We 
clearly see nine regions where energy is concentrated. These 

regions correspond to luminance and opponent chromatic 
signals, arranged as illustrated in Figure 5. 

fx

fy
π

π−π
−π

 
Figure 5. Fourier representation of a one-color per pixel image. 

 
The frequency localization of luminance and opponent 

chromatic signals in the Fourier domain allows us to 
estimate them by simply selecting corresponding frequency 
domains. Luminance is estimated by low-pass filtering, 
while chrominance is estimated by high-pass filtering. 

For natural images, luminance and chrominance are 
usually not well separated in the Fourier domain. This 
results in aliasing between luminance and chrominance, i.e. 
their spectra overlap. Consequently, our frequency selection 
procedure will give errors in the estimation. Actually, this 
aliasing causes the artifacts seen in demosaicing. Artifacts 
could be classified in four classes. 
1. One artifact is the apparent blurring due to the under-

estimation of the luminance spectrum, (i.e. choosing a 
too narrow low-pass filter).  

2. Choosing a larger filter could result in a grid effect in 
flat (homogeneous) regions of luminance due to the 
high frequency content in the chrominance signal. 

3. The same applies for chrominance. If the high pass 
filter is too large, false color appears, due to high 
frequencies of luminance in the chrominance signal.  

4. If the filter is too small, a “watercolor” effect could 
appear as colors go beyond the edges of an object. 
Generally, for demosaicing algorithms, the two most 

visible effects are blurring and false color. 
Note that this method also allows us to show that the 

Bayer CFA is the most optimal arrangement in terms of 
spatial frequency representation when placing three colors 
on a square grid. The replication periodicity of each color in 
the CFA is 2 in the horizontal and vertical direction. This 
replication periodicity in the spatial domain carries the 
chrominance in the Fourier domain at frequency ½ in the 
horizontal and vertical direction. Otherwise said, the 
chrominance and luminance spectra are maximally 
separated, allowing the best distinction between them in the 
Fourier domain. 
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2.4 Chrominance De-Multiplexing 
Assume that we are able to estimate completely and 

without error the luminance part of the signal given by 
equation (7). We now have to deal with the chrominance 
part, which is defined by: 

    
Chr (x, y) =

i
∑ Ci (x, y) ˜ m i (x, y)             (11) 

To better understand what the chrominance signal is, 
we multiply it by the modulation functions defined in 
equation (6). This is similar to selecting the chrominance 
signal in front of a particular photo-sensor type. Note that  
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This leads to: 
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Equation (13) shows that the chrominance signal is in 
fact composed of three opponent chromatic signals 
equivalent to red minus cyan, green minus magenta and 
blue minus yellow. The high-pass filter on the color 
spatially multiplexed image results in a multiplexed version 
of the chrominance. As shown in equation (12), de-
multiplexing is obtained by multiplying with the modulation 
functions. 

The de-multiplexed chrominance is still sub-sampled; 
we can interpolate it using bilinear filters mentioned above. 
At this point, the interpolation is not critical since human 
vision is not very sensitive to high spatial frequencies in 
opponent chromatic channels. 

3. The New Demosaicing Algorithm 

In summary, the new algorithm we propose is composed of 
five steps. First, estimating the luminance signal from the 
spatially multiplexed image. Second, estimating 
chrominance by high-pass filtering. This high-pass filter 
could be designed to be orthogonal to the luminance filter. 
In that case, the chrominance signal is obtained by 
subtracting luminance from the multiplexed signal. Third, 

de-multiplexing the chrominance by multiplying with the 
modulation functions results in the three opponent 
chromatic and sub-sampled signals. Fourth, interpolating 
the opponent chromatic signals and fifth, reconstructing the 
original image from the luminance and interpolated 
opponent chromatic signals. Figure 6 shows the synopsis of 
the algorithm and an example on an image. 

As the two main visible artifacts are blurring and false 
color, the luminance and chrominance filters can be 
designed in such a way as to reduce them. But it should be 
noted that high frequencies in chrominance can improve the 
high frequencies in the reconstructed luminance. This is 
visible, for example, in Figure 6. Actually, the luminance 
we have estimated (central figure) appears more blurred 
than the luminance part of the reconstructed image, because 
high frequencies in chrominance improve high frequencies 
in luminance. 
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Figure 6. Synopsis and image example of the demosaicing 
algorithm. The six images correspond to the six boxes in the 
synopsis. 

 
For our simulation in Figure 6, we have used the 

following filter (equ. 14) for estimating the luminance. Its 
orthogonal filter has been used for chrominance. 
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4. Conclusion 

We have developed a mathematical framework for spatial 
multiplexing of color. This model shows that a one-color 
per pixel image is equivalent to a sum of luminance and 
opponent chromatic signals. In the case of a regular CFA 
arrangement, luminance and chrominance are well localized 
in the spatial frequency domain, providing a way to estimate 
them by appropriate frequency selections. 

This method also allows us to show that the Bayer CFA 
is the most optimal arrangement of three colors on a square 
grid. Additionally, we can clearly explain the artifacts 
generated by the reconstruction of the image, which can be 
helpful in the design of selection filters for a particular 
application or device. 

Compared to other demosaicing algorithms, our 
proposed method has the advantage that only the 
chrominance is subject to interpolation. The luminance is 
directly extracted from all known pixel values, i.e. green 
and red and blue. Interpolating only chrominance 
information matches well with the color/luminance contrast 
sensitivity properties of the human visual system. For good 
quality image reproduction, spatial acuity in color is less 
critical than luminance acuity. 

What remains to be investigated is an appropriate 
estimator for the luminance. This poses the question of what 
exactly composes the spatial information in a three 
dimensional image, where each dimension corresponds to 
integrated signals of a wideband wavelength domain. 

Finally, with this framework, we can define the 
conditions for which mosaicing can be reconstructed 
without perceived errors. This can lead to new insights into 
visually lossless compression of color images. 
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