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Abstract 

This paper describes a method for identifying object 
materials on a raw circuit board by means of multi-spectral 
imaging.  First, we develop a spectral camera system for 
observing tiny objects.   Second, an algorithm is proposed 
for estimating the spectral reflectance functions of object 
surfaces.  We do not use the finite-dimensional linear model, 
but present a direct method under the narrow band 
assumption.  We distinguish metals and dielectrics based on 
the difference of reflectance in changing illumination 
geometries.   Third, an algorithm is presented for classifying 
the objects into several circuit elements by using the 
estimated spectral-reflectances. Finally, region segmentation 
results are demonstrated in an experiment using a real circuit 
board. 

Introduction 

Spectral-spectral reflectance of an object is based on the 
material composition of its object surface.  This property 
can be helpful to recognize objects and segment regions in 
the illumination invariant way.  The reflectance is usually 
divided into two parts: interface (or specular) reflectance 
and body (or diffuse) reflectance.  Reflection from 
homogeneous materials like metals is based mostly on the 
interface reflection.  For inhomogeneous materials like 
plastics and paints, the body reflectance component is 
meaningful.  Therefore the surface-spectral reflectance 
varies with the material compositions and the illumination 
geometries.  In principle, metals and plastics can be 
distinguished using the above reflection components.  So far 
several methods were proposed for estimating object surface 
reflectances [1][2].  However there is no practical imaging 
system and algorithms for identifying object materials in a 
natural scene.   

An integrated circuit board used in a variety of 
industries is one of the most complicated objects to 
understand from the observed color image.  The surface 
layer of a raw circuit board includes various elements, which 
are a mixture of different materials such as substrate, metal 
plate, metal wire, solder, and paint.  Moreover, the area of 
each element is as small as metal wire is less than 100 

micron in width.  These features make the machine 
inspection problem difficult in using a color image of a 
circuit board.   

The present paper describes a method for identifying 
objects of different materials on a raw circuit board by 
means of multi-spectral imaging.  First, we develop a 
spectral camera system for observing tiny objects under a 
uniform illumination.  The system consists of a LCT (liquid 
crystal tunable) filter, a monochrome CCD camera, a macro 
lens, and a personal computer.   

Second, an algorithm is proposed for estimating the 
spectral reflectance functions of object surfaces.  We do not 
rely on the finite-dimensional linear model that is often used 
for reducing the dimensionality of surface-spectral 
reflectances (see [3]-[5]).  A direct method is presented for 
reflectance recovery under the narrow band assumption of 
filtration transmittance.  We distinguish metals and 
dielectrics based on the difference of reflectance in changing 
illumination geometries.    

Third, an algorithm is presented for classifying the 
objects into several circuit elements by using the estimated 
spectral-reflectance functions pixel-by-pixel. From a 
computational speed and time viewpoint, this algorithm is 
much more effective than the usual clustering algorithms 
such as the k-Means algorithm.    

Finally, region segmentation results are demonstrated 
and the reliability of the method is confirmed in an 
experiment using a real raw circuit board. 

Spectral Imaging System  

Figure 1 shows a camera system for spectral imaging 
that we realized in this study using a LCT filter.  The LCT 
filter is convenient for spectral imaging because the 
wavelength band can be changed easily and electronically 
[6].  That is, the center wavelength of filtration is 
electronically tunable with no moving parts.  This filter is 
regarded as a type of polarization interference filter based 
on the design of the Lyot filter type [7].  The filter is the 
CRI-model VISI, which operates over the range [450 - 650 
nm].  We use a monochrome CCD camera (SONY XC-75) 
and place this filter in front of the macro lens (SONY 
50MM) of a C mount.  Moreover we created a mechanism 
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for rotating the filter as shown in Figure 1, so that the 
polarization effect can be detected in the acquired images.  
Figure 2 depicts a set of relative functions for representing 
the whole spectral sensitivities.  The bandwidth of the 
spectral sensitivity functions is about 50 nm. 

  

 

Figure 1 Spectral camera system. 

 

Figure 2 Set of spectral sensitivity functions. 

Features of Circuit Boards  

Figure 3 shows the observed image of a small part on a 
raw circuit board under the light source of an incandescent 
lamp.  The main elements on the board surface are (1) a 
substrate, (2) gray metallic footprints, (3) resist-coated 
metals, (4) coated via-hole metals, (5) coated metallic wires, 
and (6) silk-screen prints.  Figure 4 shows a partial cross 
section of the board. The via-hole metals and the metallic 
wires have the same material composition.  Therefore the 
materials on the board surface are classified into five 
element materials of (1) a substrate, (2) footprints, (3) resist-
coated metals, (4) non-resist metals, and (5) silk-screen 
prints.   
 

 

Figure 3 Image of a raw circuit board. 

 

 

Figure 4  Cross section of the board. 

 

Spectral Reflectance Estimation  

Most algorithms for recovering surface reflectance from 
image data used the constraint that the spectral reflectance 
functions of object surfaces in a natural scene are 
approximated with the finite-dimensional linear model.  
Although this model is useful for reducing the number of 
unknown parameters of spectral reflectance, it is difficult to 
determine an appropriate model dimension and the 
algorithm is somethimes unstable in solving an inverse 
estimation problem.  Here we propose a straightforward way 
of obtaining a reliable estimate of the reflectance function 
from the camera outputs of narrow band filtration. 

Let the wavelength bands of the filter be f bands of λ1, 

λ2, …, λf.   If each band is narrow, then the sensor outputs 

( )
k

xρ  at spatial location x can be represented by the 

equation 
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  (k = 1, 2, …, f),  
where ( , )S xλ  is the surface-spectral reflectance, ( )E λ  is 
the illuminant spectral power distribution of a light source, 
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and ( )
k

R λ  is the k-th sensor spectral sensitivity function in 
Figure 2, and the integration is done in the visible range 
[400-700nm].   

The spectrum distribution illuminating an object surface 
is measured directly using a spectro-radiometer and a 
reference white standard.  Therefore the spectral reflectance 
is estimated in the form 

( ) ( ) ( ) ( ), /
k k k

S x x E R dλ ρ λ λ λ= � .   (2) 

Thus, the spectral reflectance is recovered by 
eliminating the lighting and sensing effects from the senor 
outputs. 

Detection of Specular Metal 

 We should note that the observed surface reflectances 
depend not only on the material composition, but also on the 
surface geometry of roughness.  The footprint is a metal 
composed of uncoated solder.  This object surface is rough, 
and strong specular highlights appear on the surface at some 
angles of viewing and lighting.  This leads to large 
fluctuation of pixel values between highlight area and matte 
area.  Here we solve the material detection problem by 
controlling the illumination direction of a light source, 
because the metal surface reflectance depends greatly on the 
illumination direction.  Figure 5 shows the measuring system 
with two light sources.  The viewing direction of a camera is 
always perpendicular to the board surface. The light sources 
illuminate the same surface alternatively from one of two 
directions (from left or right) that are mirrored about the 
viewing direction.   

All objects except for footprints exhibit the dielectric 
reflection property and the surfaces are smooth.  Therefore 
the observed body reflectances should be coincident at two 
illumination directions when a calibrated uniform light beam 
is used. On the other hand, if the two reflectances are 
different as one is specular highlight and another is matte, 
the surface is a rough surface of the footprint.  Then we 
discard the specular reflectance and select the matte 
reflectance as the estimate.  It is possible for the footprint 
that the both observations are matte.  

Moreover, the measuring system in Figure 5 is effective 
for eliminating shadows appearing in an image at hollows of 
the board and at sharp edges of the element. 

 

 

Figure 5 Measuring system with two illumination directions.      

Detection of Holes 

There are many holes through a circuit board.  The 
holes are classified into two types of the via-hole and 
through-hole as shown in Figure 4.  Transmitted light is 
more effective than reflected light for detecting these holes.  
Figure 6 shows a measuring system with back illumination.  
We sense the light passing through the board.  Then the 
holes are detected as highlight disks  in the back-
illuminated image.  

 

Figure 6 Measuring system with back illumination. 

Material Classification Algorithm 

We use 21 sensor outputs in the range [450 - 650 nm] at 
10 nm increments to classify each pixel point into the 
element materials on the board.  This classification could be 
performed using a multi-dimensional clustering algorithm 
such as k-Means algorithm [8].    However, the algorithm 
does not often work well because of high dimensionality of 
the reflectance data.  Figure 7 shows the typical spectral 
curves of the estimated reflectances for different materials.  
Therefore an effective classification algorithm is proposed 
using the shape features of spectral reflectance. 

 
The basic process is summarized as follows: 

1. Two sets of spectral reflectance data are obtained at two 
illumination directions.  The two dimensional array of 
reflectance data is called the reflectance image.  The 
two reflectance images are then scaled so that the left 
and right data sets have the same average reflectance. 

2. Let 
1 2 21
, , ...,S S S be the averaged spectral reflectance 

over the whole image.  High reflectance satisfying the 

condition ( ) ( ) ( )
1 1 2 2 21 21

, , ...,S x S S x S S x S> > >  

corresponds to white of the screen print or highlight of 

the footprint and metal.  If this condition holds for both 

images, the pixel point is classified into the print area.  

Otherwise, it is into the footprint.  

3. Two reflectance images are combined into a single 
reflectance image.  The average reflectance of the 
corresponding two pixels is used for the screen print, 
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and the lower reflectance is selected for the footprint. 
The higher reflectance is for the remaining pixels.  

4. If the spectral peak is located in [560-620nm] and the 

condition ( ) ( ) ( )
12 12 13 13 18 18

, , ...,S x S S x S S x S> > >  

holds, then the pixel is classified into the bright non-

resist metal.  

5. The remaining pixels except for the print and non-resist 

metal are examined.  If the spectral peak is in [500-

570nm] and ( ) ( ) ( )
6 6 7 7 13 13

, , ...,S x S S x S S x S> > >  

holds, then the pixel point is classified into the resist-

coated metal  
6. If the spectral curves at the remaining pixels have large 

peaks, then the pixel points can be dark non-resist metal 
or dark resist-coated metal.  Otherwise those belong to 
the regions of footprint or substrate.  In the first case, if 

( ) ( )
1 21

S x S x≥ , it is classified into the resist-coated 
metal, and if ( ) ( )

1 21
S x S x< , it is classified into the 

non-resist metal. 

7. If the spectral peak is in the range [460-520nm] and the 

condition ( ) ( ) ( )
2 2 3 3 8 8

, , ...,S x S S x S S x S> > >  holds, 

then it is classified into the substrate. 

8. The average reflectance ( ) ( )k

k

y x S x= �  is computed 

over wavelength at each pixel.  Moreover the fixed 

average y  is calculated over the remaining whole 

pixels. If the condition ( )y x y> holds, the pixel is 

classified into the footprint.  Otherwise it is into the 

substrate. 

 

 

Figure 7 Typical spectral curves of the estimated reflectances for 

the different materials. 

Experimental Results 

Figure 8 shows the scenes of the raw circuit board, 
which was illuminated from two different directions with 
incandescent lamps.  The incident angles were 60degrees to 
the surface normal of the board.  The spectral image of each 
scene was captured with an image size of 486x688.  Two 
reflectance images were then obtained by eliminating 
illumination effects from the observed spectral images.  

Next, the proposed material classification algorithm was 
applied to the reflectance images.  In the classification 
process, the two reflectance images were combined into a 
reflectance image, based on comparison between two 
reflectances at the same pixel point.  The element label was 
then assigned to each pixel as (1) substrate, (2) footprints, 
(3) resist-coated metals, (4) non-resist metals, and (5) silk-
screen prints.  Figure 9 shows the material classification 
results.  The original board region is segmented into the five 
element regions with different materials.   

 
 

 

(a) Illuminated from the left. 

 

(b) Illuminated from the right. 

Figure 8 Scenes of the raw circuit board illuminated from two 

different directions. 
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Figure 9 Material classification results by the proposed method. 

 
 
Because of various noise effects, the pixel-by-pixel 

identification includes some errors that are inevitable.    
Most of the errors occur at random dots or around material 
edges.  So we executed an image processing for correcting 
the errors with miss labels so that the given part of the board 
was segmented into a set of uniform element regions.  This 
processing is a type of region merging.  If the area of a 
region is less than a certain threshold, then the element label 
of the objective region is replaced with the neighbor’s 
element label.  Next, another smoothing operation was done 
for the material edges.  Finally, the holes detected in a 
separate way were superimposed on the segmented region.  
Figure 10 shows the final region segmentation results after 
the above region processing.  .   

Thus, the raw circuit board was well segmented into six 
regions with different materials including holes.  Especially 
note that the footprints are correctly identified as the rough 
metallic surface.  In comparison with a traditional approach, 
we applied the k-Means algorithm [8] to the reflectance 
image.   Figure 11 shows the results by the k-Means 
clustering algorithm.   The initial values of the cluster 
centers were given from the known regions.  There are 
errors at some regions including metallic surfaces.  The k-
Means algorithm has disadvantages of (1) initial clustering 
centers affecting the classification performance and (2) 
expensive computational cost. 

 

 

 

Figure 10 Final region segmentation results. 

 

Figure 11 Classification results by the k-Means algorithm. 

 

Conclusion 

The present paper has described a method for 
identifying objects of different materials on a raw circuit 
board by means of multi-spectral imaging.  First, we 
introduced a spectral camera system for observing tiny 
objects under a uniform illumination.  The system consists 
of a LCT filter, a monochrome CCD camera, a macro lens, 
and a computer.  Second, an algorithm was proposed for 
estimating the spectral reflectance functions of object 
surfaces.  We did not use the linear model, but a direct 
method under the narrow band assumption of filtration 
transmittance.  We distinguished metals and dielectrics by 
changing illumination geometries.   Third, an algorithm was 
presented for classifying the objects into several circuit 
elements by using the estimated spectral-reflectances pixel-
by-pixel.  Finally, region segmentation results were 
demonstrated in an experiment using a real raw circuit board. 

The proposed method can be applied to material 
identification of any objects in a natural scene. 
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